
Getting the best
performance from

Elasticsearch

B Y D E K L A N V A N D E L A A R S C H O T

03

05

09

09

10

12

15

17

22

25

30

31

33

34

38

38

39

41

43

<PART 2>

<PART 3>

<PART 1>

INTRODUCTION
Elasticsearch is a platform that provides a distributed open-source
search solution for all types of data. A common use case is ELK
(Elastic, Logstash & Kibana). These products combined create a
powerful platform for infrastructure and application central logging
with the ability to visualize large sums of data. As a result, more and
more businesses are implementing the ELK stack.

However, they all quickly run into trouble with scaling and keeping
query performance at its optimum. This eBook will uncover the art
of keeping the ELK stack running at its best and help you improve
existing implementations.

<PART 1>

//3

<PART 1>

INFRASTRUCTURE

INFRASTRUCTURE
Getting your foundations right is essential for building a performant
cluster. The infrastructure (Virtual Machines, Network, Storage, etc)
is the most critical part of an elastic deployment. If you get it wrong
no matter how much you adjust any performance configurations
the platform will always underperform. Resulting in poor query,
write, index and update performance!

Let’s explore what a good infrastructure base looks like when deploying
the Elastic stack. The Elastic stack can be deployed on-premises, in the
cloud, in docker, and a number of other ways. The requirements for the
base infrastructure remain mostly the same. Firstly and most importantly
you are going to want a minimum of three nodes (Virtual Machines Or
Containers). You should ideally design this to span multiple zones to build
a fully resilient cluster. For example in the Cloud, you want to ensure you
have nodes sat in different zones to mitigate risks of outages.

In a physical environment, this might be a separate rack or data centre.
Remember latency and bandwidth are important. You want to ensure
you have a low latency connection between nodes and ample bandwidth.
When designing these capabilities Elasticsearch has a setting for ‘Shard
Allocation Awareness’. This configuration provides the cluster with
information regarding which nodes are on the same physical server, in
the same rack, or in the same zone. This allows Elastic to distribute the
primary shard and its replica shards to minimize the risk of losing all
shard copies in the event of a failure. Check out how to enable Shared
Allocation Awareness here.

<PART 1>

//5

https://www.elastic.co/guide/en/elasticsearch/reference/current/allocation-awareness.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/allocation-awareness.html

STORAGE LAYERPRIVATE SUBNET

Block
Storage

Elastic
Master &
Data 01

Block
Storage

Elastic
Master &
Data 01

Block
Storage

Elastic
Master &
Data 01

PUBLIC SUBNET

Load
Balancer

3 Nodes as above should be ideal for most Elasticsearch deployments but
for much larger deployments nodes can be split into different personas.
This provides the capability to scale horizontally, which is very suited for
Cloud computing. The different personas are as follows:

MASTER NODES This node’s role is to control the cluster.

HTTP NODES This node’s role is to run queries from.

DATA NODES These nodes contain the data for the cluster.

COORDINATING NODES This node provides load balancing capabilities.

LOGSTASH NODES This node’s role is to run the Logstash application.
To collect logs and parse them into Elasticsearch.

KIBANA NODES This node’s role is to run the Kibana application.

<PART 1>

INFRASTRUCTURE

//6

When selecting CPU, RAM and storage as a general rule of thumb
start bigger and scale back as required. The minimum number of nodes
required for a production environment is 3. You will want to ensure
they have SSD storage (write performance is seriously important when
building your cluster), a minimum of 16 GB of ram (The sweet spot is
actually around 64 GB) and a powerful CPU with multiple cores. Below is
the recommended infrastructure for the cloud and on-premises.

PROVIDER COMPUTE STORAGE NOTES

AWS R Series with
a minimum of
2 cores.

EBS - IO2 Avoid EFS

AZURE E Series with
a minimum of
2 cores.

Managed
Disks - P series

Avoid Azure Files

ON-PREM 2 cores & a
minimum of
8GB of ram.

SSD’s N/A

<PART 1>

INFRASTRUCTURE

//7

<PART 2>

BASIC
PERFORMANCE
TUNING

BASIC PERFORMANCE TUNING
In this section we are going to run though adjusting your cluster for
the best possible performance. It’s important to collect metrics to
verify that your changes have indeed improved the performance
of your cluster. As a result we will also explore how to monitor parts
of your Elastic cluster and which metrics provide insight into the
granular parts of your Elastic platform.

How to measure performance
Setting up performance benchmarks is essential for monitoring and
verifying your elastic cluster is performing at its best. Elasticsearch provides
all of the required metrics to tackle all of the problems you might encounter.
To collect our monitoring analytics we shall use Metric beat, it’s super
simple to set up and has all of the monitoring we are going to need built in!
The areas that you should be monitoring are broken down below.

In production, it is strongly recommended
to use a separate elastic cluster for
monitoring. Using a separate cluster will
prevent cluster issues impacting your ability
to access monitoring data.

<PART 2>

//9

Setting up Metric Beat
Setting up Metric beat is very similar to most Elastic products, you will
need to install the Metric beat package on each of the nodes and add the
correct configuration to the config files to ship the logs to your monitoring
cluster. Different operating systems have different packages. The most
common way is to use a package manager as below:

INSTALLATION
 apt package manager

Download and install the Public Signing Key:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch

| sudo apt-key add -

On debian you will need to ensure https transport is enabled for APT, the
below will fix that:

sudo apt-get install apt-transport-https

Save the repository definition to /etc/apt/sources.list.d/elastic-7.x.list:
echo “deb https://artifacts.elastic.co/packages/7.x/apt

stable main” | sudo tee -a /etc/apt/sources.list.d/elastic-

7.x.list

<PART 2>

BASIC PERFORMANCE TUNING

//10

You will need to update apt using the below, the && will then run the
install command for the metric beat package:

sudo apt-get update && sudo apt-get install metricbeat

Make sure you enable metric beat to run at boot with the below:
sudo systemctl enable metricbeat

If your system does not use systemd then run:

sudo update-rc.d metricbeat defaults 95 10

INSTALLATION
 yum package manager

Download and install the public signing key:

sudo rpm --import https://packages.elastic.co/GPG-KEY-

elasticsearch

Create a file with a .repo extension (for example, elastic.repo) in your /etc/
yum.repos.d/ directory and add the following lines:

[elastic-7.x]

name=Elastic repository for 7.x packages

baseurl=https://artifacts.elastic.co/packages/7.x/yum

gpgcheck=1

gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch

enabled=1

autorefresh=1

type=rpm-md

<PART 2>

BASIC PERFORMANCE TUNING

//11

Now you can install Metric beat by running:
sudo yum install metricbeat

Make sure you enable Metric beat to run at boot with the below:
sudo systemctl enable metricbeat

If your system does not use systemd then run:
sudo chkconfig --add metricbeat

Metric Beat can be installed manually
and from source. More information
about this method can be found on the
ElasticSearch website.

Configuring Metricbeat
Now that we have Metric beat installed on each of the nodes in our
cluster, it’s time to configure Metric beat to ship monitoring data to our
monitoring cluster. Firstly you need to enable monitoring on the cluster.
Using curl you can enable this:

To check if monitoring is enabled:
curl -X GET “localhost:9200/_cluster/settings?pretty”

<PART 2>

BASIC PERFORMANCE TUNING

//12

To enable monitoring:
curl -X PUT “localhost:9200/_cluster/settings?pretty” -H

‘Content-Type: application/json’ -d’

{

 “persistent”: {

 “xpack.monitoring.collection.enabled”: true

 }

}

‘

Enable the x-pack monitoring service on each of the nodes:

metricbeat modules enable elasticsearch-xpack

Configure the Metric beat service. Edit the modules.d/elasticsearch-xpack.
yml file to contain the below:

- module: elasticsearch

 xpack.enabled: true

 period: 10s

 hosts: [“http://localhost:9200”]

 #scope: node

 #username: “user”

 #password: “secret”

 #ssl.enabled: true

 #ssl.certificate_authorities: [“/etc/pki/root/ca.pem”]

 #ssl.certificate: “/etc/pki/client/cert.pem”

 #ssl.key: “/etc/pki/client/cert.key”

 #ssl.verification_mode: “full”

 xpack.enabled: true

<PART 2>

BASIC PERFORMANCE TUNING

//13

The localhost configuration is where metricbeat will collect data from.
As we are deploying the agent on each of the nodes this will work fine.
We now need to configure metricbeat to ship data to our monitoring
cluster. Edit the metricbeat.yml file to contain the below:

output.elasticsearch:

 # Array of hosts to connect to.

 hosts: [“http://es-mon-1:9200”, “http://es-mon2:9200”]

 # Optional protocol and basic auth credentials.

 #protocol: “https”

 #username: “elastic”

 #password: “changeme”

The hosts field should contain the address of your monitoring cluster.

Now we can restart Metric beat on each of the nodes.

systemctl restart metricbeat

Now we can disable the default collection of monitoring metric on our
production cluster using curl:

curl -X PUT “localhost:9200/_cluster/settings?pretty” -H

‘Content-Type: application/json’ -d’

{

 “persistent”: {

 “xpack.monitoring.elasticsearch.collection.enabled”:

false

 }

}

‘

<PART 2>

BASIC PERFORMANCE TUNING

//14

Viewing monitoring metrics in Kibana
Now that we are collecting the data it’s time to see what it looks like. Kibana
has a number of premade templates to view your Elastic Search metrics
with minimal work! In this section we will quickly cover how to view your
metrics, before jumping into tuning and explaining what they all mean.

Before we start, verify that the monitoring.ui.enabled setting is set to
true in your kibana.yml configuration file. Whilst this is the default value, if
it has been changed you will be unable to see the monitoring tab in Kibana.

	➜ NOTE: If you are using Elastic's security features you will need

to provide a user ID and password for Kibana to retrieve data.

Firstly let’s load up all the premade templates shipped with Metric beat.
On a node that has Metric beat installed run the below, to import the
default templates into your Kibana instance.

metricbeat setup -e

Next we need to create a user that has the monitoring_user built-in
role on the monitoring cluster. Add the monitoring.ui.elasticsearch.
username and monitoring.ui.elasticsearch.password settings in the
kibana.yml file. The Kibana configuration file will be contained on nodes
running Kibana!

	➜ NOTE: That if these settings are omitted, Kibana will use the

elasticsearch.username and elasticsearch.password setting values.

<PART 2>

BASIC PERFORMANCE TUNING

//15

If the Elastic security features are enabled on the Kibana server, only
users that have the authority to access Kibana indices and to read the
monitoring indices can use the monitoring dashboards. These users must
exist on the monitoring cluster. If you are accessing a remote monitoring
cluster, you must use credentials that are valid on both the Kibana
server and the monitoring cluster. The users you create should have the
monitoring_user and kibana_admin built-in roles.

Open Kibana in your web browser.
If you are running Kibana locally, browse to http://localhost:5601/.

If the Elastic security features are enabled, log in.

Finally Open ‘Stack Monitoring’. You are now presented with the below
and ready to enjoy monitoring using Elasticsearch, Metric beat & Kibana!

<PART 2>

BASIC PERFORMANCE TUNING

//16

http://localhost:5601/

Search performance
In Elasticsearch, search requests are one of two types. They are very
similar to traditional read and write requests. Elastic provides metrics that
correspond with the two phases of the search process (fetch & query).
The below will describe how this process works:

1 The client send a request to node 2

Node 1 Node 2 Node 3 Node 4

REQUEST

Client

2 Node 2 (which is the coordinating node) sends the query to a copy
(either replica or primary) of all of the shards in the index.

Node 1 Node 2 Node 3 Node 4

COORDINATING NODE QUERY

Client

MASTER

<PART 2>

BASIC PERFORMANCE TUNING

//17

3 Each of the shards executes the query locally and delivers results to
Node 2. Node 2 is then responsible for sorting and compiles them into
a global priority queue.

Node 1 Node 2 Node 3 Node 4

COORDINATING NODE QUERY

Client

4 Node 2 then finds out which documents need to be fetched and

sends a multi GET request to all of the relevant shards.

Node 1 Node 2 Node 3 Node 4

COORDINATING NODE QUERY

Client

<PART 2>

BASIC PERFORMANCE TUNING

//18

5 Each of the shards load the documents and returns them to Node 2.

Node 1 Node 2 Node 3 Node 4

COORDINATING NODE QUERY

Client

6 Node 2 then delivers the search results to the client. Providing the
queried data.

Node 1 Node 2 Node 3 Node 4

REQUEST

Client

<PART 2>

BASIC PERFORMANCE TUNING

//19

OPTIMIZING YOUR CLUSTER FOR SEARCH PERFORMANCE
For Elasticsearch clusters that are used mainly for search or if searching is
a customer-facing feature, then you should be monitoring query latency
and start remediating issues in the event that the cluster surpasses a
defined threshold. Collecting metrics over a couple of months will provide
great insight into areas of the platform that need to be tuned and this
data will be integral to sections later on in this ebook.

METRICS TO MONITOR

NAME TYPE DESCRIPTION

indices.search.query_total Throughput The total number of queries run.

indices.search.query_time_in_millis Performance
The total time spent processing
queries.

indices.search.query_current Throughput
The total number of queries
currently being processed.

indices.search.fetch_total Throughput The total number of fetches.

indices.search.fetch_time_in_millis Performance
The total time spent processing
fetches.

indices.search.fetch_current Throughput
The total number of fetches
currently being processed.

<PART 2>

BASIC PERFORMANCE TUNING

//20

 query load
(Total Queries & Current Running Queries)
Collecting these metrics will allow you to generate
historical data presenting the normal load for your cluster
whilst processing a number of queries. Moreover, the
currently running queries can be used to quickly find
underlying problems. Consider alerting on unusual spikes
or dips, these are normally indications of a problem.

 query latency
(Total queries & Time)
Using these metrics combined will allow you to calculate
the average latency, this is achieved by sampling the total
number of queries and the total elapsed time at regular
intervals. It would be prudent to set up an alert if the
latency exceeds a threshold. This should provide a good
indication of any potential resource bottlenecks or queries
that require optimisation.

 fetch latency
(Total fetch & time)
As explained above this is the second part of the search
process and should normally take considerably less
time than the query phase. This should provide a good
indication on performance issues as a result of slow disks,
enriching documents or requesting too many results.

<PART 2>

BASIC PERFORMANCE TUNING

//21

Index Performance
Indexing requests are effectively the same as write requests in traditional
database platforms. For Elasticsearch workloads that are write-heavy,
it’s important to analyze how effectively your platform is able to update
indices with new information. When new information is added to an index
or existing data is updated or remote, each shared in the index is updated
using two processes, refresh & flush. A newly indexed document is not
immediately made available for search. They are first written to an in-
memory buffer which is then processed as part of the next index refresh.

Index Refresh1

Refresh2

		
New documents

for indexing

INSIDE THE SHARD

Translog In Memory
 Buffer

Translog System
Cache

In Memory
 Buffer

Segment

<PART 2>

BASIC PERFORMANCE TUNING

//22

METRICS TO MONITOR

NAME TYPE DESCRIPTION

indices.indexing.index_total Throughput
The total number of documents
that have been indexed.

indices.indexing.index_time_in_millis Performance
The total time spent indexing
documents.

indices.indexing.index_current Throughput
The number of documents that
are currently being indexed.

indices.refresh.total Throughput
The total number of index
refreshes that have taken place.

indices.refresh.total_time_in_millis Performance
The total time that has been
spent refreshing indices.

indices.flush.total Throughput
The total number of index flushes
that have taken place to disk.

indices.flush.total_time_in_millis Performance
The total time spent flushing
indices to disk.

Index Flush3

Translog

Segment

A + B
Translog

DeletedSegment
A

Segment
B

Segment

A + B

DISK

Segments
created and
merged within
the file system
cache.

<PART 2>

BASIC PERFORMANCE TUNING

//23

 index latency
Elasticsearch does not directly expose this metric
however it can be calculated using the index_total
and the index_time_in_millis metrics.

If your latency is increasing, your
platform is likely indexing too
many documents at one time.

 flush latency
Data is not written to disk until a flush has been
completed as a result monitoring the flush latency will
provide valuable insight into your elastic performance.
An increasing metric will likely indicate slow disks.
In extreme cases, this could present you from being
able to add new information to your index.

Try experimenting with the index.translog.flush_
threshold_size in the index’s flush setting. The default
size is set to 512 MB. When the tranlogs hits 512 MB of
usage it is flushed. By increasing the flush threshold size,
the Elasticsearch cluster creates a few large segments
(instead of multiple small segments). Large segments
merge less often, and more threads are used for indexing
instead of merging, but as the merge process occurs this can
cause a performance degradation if the merge is too large.

<PART 2>

BASIC PERFORMANCE TUNING

//24

Lowering the threshold size is better for systems with
low indexing query volumes. You should look to change
this setting inline with your cluster’s use case.

	➜ NOTE: An increase in index.translog.flush_threshold_size

will increase the time that it takes for a translog to complete. If a

shard fails, recovery will take longer, because the translog is larger.

Garbage collection (Memory management)
Elastic loves memory and getting the right amount is going to be key for
a performant elastic stack. Elastic and Lucene will consume all available
memory on your nodes in the following ways the JVM heap and the file
system cache.

JVM HEAP TUNING & MONITORING
You should look to set the JVM heap to less than 50% of the available system
memory and never go higher than 32 GB. As your system is restricted by
the total memory available adjusting the JVM heap will reduce the available
memory for Lucene. As a result, it is important to get this balancing
impact correct. Setting too much memory to the heap will result in Lucene
responding to requests slowly, however setting the JVM heap too small will
result in out of memory errors or reduces overall application performance.

SYSTEM MEMORY JVM HEAP LUCENE OTHER

NORMAL 40% 40% 20%

ADJUSTED 60% 20% 20%

<PART 2>

BASIC PERFORMANCE TUNING

//25

OVERRIDING THE DEFAULT JVM HEAP SIZE
The default configuration whilst installing elastic is 1 GB for the JVM
Heap. This is simply too small for most deployments. Exporting the
required size as an environmental variable will resolve this! You will need
to restart Elastic for this to take effect.

$ export ES_HEAP_SIZE=10g

	➜ NOTE: You need to specify your memory argument using one of the

letters “m” or “M” for MB, or “g” or “G” for GB. Your setting won’t

work if you specify “MB” or “GB.”

The other option is to set the heap size on start as below:

$ ES_HEAP_SIZE=”10g” ./bin/elasticsearch

 You can verify the change has been applied with the below command:
$ curl -XGET http://<hostname>:9200/_cat/nodes?h=heap.max

Garbage collection
To free up heap memory Elasticsearch uses a garbage collection process,
but this process subsequently requires system resources to run! As a
result it’s important to configure a frequency and run time that supports
the workload of your cluster. It is highly recommended that Heap size not
be more than half of the total memory. So if you have 64 GB of memory,
you should not set your Heap Size to 48 GB. It is also not recommended
to have a heap size of over 32 GB.

<PART 2>

BASIC PERFORMANCE TUNING

//26

Setting your heap too large can result in excessive
garbage collection times which can have a negative
impact on your cluster and in some cases cause your
cluster to incorrectly register a node as being offline.
A node that has continatily higher than 85% JVM
heap usage and CPU spikes following this will
indicate that garage collection is causing a
performance bottleneck. See below for more detail.

The garage collector also has multiple different collection algorithms
that can be used. Elasticsearch has a default Garbage Collector of
Concurrent-Mark and Sweep (CMS). Elasticsearch comes with very
good default garbage collector settings. It is recommended that you do
not change the collector, however it’s worth understanding the other
options. Other options include Serial Collector & Parallel Collector.

 serial garbage collector
Serial Collector is best-suited to single processor machines
as it can’t take advantage of multiprocessor hardware,
although it can be useful on multiprocessors for applications
with small data sets (up to approximately 100 MB).

Serial Collector is suited when only 1 CPU is available
and no pause requirements exist, when using very
small JVM’s and small live data set (less than
100 MB). Using the serial collector with Elasticsearch
can be devastating for performance.

<PART 2>

BASIC PERFORMANCE TUNING

//27

 parallel collector
The parallel collector is also known as throughput collector,
it’s a generational collector similar to the serial collector.
The primary difference between the serial and parallel
collectors is that the parallel collector has multiple threads
that are used to speed up garbage collection. The parallel
collector is intended for applications with medium-sized
to large-sized data sets that are run on multiprocessor or
multi-threaded hardware. If you don’t care about pause
time and prefer to throughput, this collector would be best.

 g1 garbage collector (default)
This server-style collector is for multiprocessor machines
with a large amount of memory. It meets garbage collection
pause-time goals with high probability, while achieving
high throughput.

METRICS TO MONITOR

NAME TYPE DESCRIPTION

jvm.gc.collectors.young.collection_count Other
The total number of young-
generation garbage collections.

jvm.gc.collectors.young.collection_time_
in_millis Other

The total time spent processing
young-generation garbage
collections.

jvm.gc.collectors.old.collection_count Other
The total number of old-
generation garbage collections.

<PART 2>

BASIC PERFORMANCE TUNING

//28

NAME TYPE DESCRIPTION

jvm.gc.collectors.old.collection_
time_in_millis Other

The total time spent processing
old-generation garbage
collections.

jvm.mem.heap_used_percent Utilization
The total percentage of the JVM
heap that is currently in use.

jvm.mem.heap_committed_in_bytes Utilization
The amount of JVM heap that has
been committed.

indices.flush.total_time_in_millis Performance
The total time spent flushing
indices to disk.

 garbage collection & frequency
Whilst garbage collection is running there are periods where
the node performing the task will halt. This results in the
node being unable to perform any tasks. You should look
for collections that exceed 30 seconds. After 30 seconds
of collection time the master will believe that the node has
failed and thus its important to monitor this metric.

 jvm heap in use
At 75% JVM heap usage Elasticsearch will perform a
garbage collection. Setting up an alert metric of 85%
usage will highlight if nodes having issues with garbage
collection. A node that often exceeds this limit is likely
unable to keep up with the rate of garbage collection. This
problem is addressed by increasing the nodes heap size or
adding more nodes to the cluster.

<PART 2>

BASIC PERFORMANCE TUNING

//29

 jvm heap used compared to jvm heap committed
In a typical Elasticsearch cluster the amount of JVM heap
in use will rise and fall indicating successful garbage
collection. If the pattern begins to increase over a period of
time this could indicate that garage collection is unable to
keep up with the amount of objects being created on the
node. The result is likely slow garbage collection times and
this could result in nodes running out of memory. This metric
will help you identify if you need to increase the amount of
nodes or have disk performance issues with a node.

Compute Performance
A key performance indicator is the underlying host operating system.
Items like Memory, CPU usage, Disk I/O & Network usage provide critical
information into how a node is behaving within a cluster. Our previous
metrics are likely to assist you in finding bottlenecks and these metrics
will verify your conclusions.

MEMORY USAGE
Elasticsearch is very memory intensive and its ability to consume all
available memory makes it complex to diagnose memory usage. Using
rich monitoring that can provide details as to memory usage broken down
by processes, will provide valuable data allowing you to further tweak
your Elastic nodes for better performance.

<PART 2>

BASIC PERFORMANCE TUNING

//30

METRICS TO MONITOR

NAME METRIC TYPE

MEMORY USAGE Utilization

CPU USAGE Utilization

NETWORK USAGE Utilization

DISK IO Utilization

Cluster Health
The health of the cluster is of great importance. Any serious issues with
the cluster will be detected with these metrics. Whilst not directly related
to performance they provide valuable insight whilst applying tweaks to
your Elastic cluster.

METRICS TO MONITOR

NAME TYPE DESCRIPTION

cluster.health.status Other The overall cluster Status

cluster.health.number_of_nodes Availability The total number of nodes

cluster.health.initializing_shards Availability The Number of initalizating shards

cluster.health.unassigned_shards Availability The total number of unassigned shards.

<PART 2>

BASIC PERFORMANCE TUNING

//31

 cluster status
This metric provides feedback regarding the general health of
the cluster. A yellow status indicates that at least one replica
shard is unallocated or missing. Whilst searching is still
possible another shard going offline may result in data loss.

If the cluster status is red this indicates that at least one
of the primary shards is missing. The result of this is that
the cluster is missing data. Whilst searches are still possible,
it will only include data available to the cluster. The cluster
will also be blocked from indexing into the missing shard.

It is recommended to have a warning configured to alert
on a yellow status that has been active for longer than
5 minutes. Moreover if the status has been red for more
than a minute this should indicate a critical error warning.

 initializing and unassigned shards
Whilst a node with shards on is rebooting or whilst first
creating an index, the shards will display a status of
“initializing”. Once this process has completed the shard
will transition to a status of “Started” or “Unassigned”.
The master node will attempt to assign the shard to the
cluster during this period. An early warning sign of an
unstable cluster is if you see a shard remaining in the
initialization or unassigned state for too long.

<PART 2>

BASIC PERFORMANCE TUNING

//32

Storage
Your elastic cluster is heavily dependent upon the storage on which it
resides. Setting your storage up wrong can have huge consequences and
result in your cluster performing poorly. It’s also important to make sure
the storage is balanced amongst nodes to distribute the load across the
nodes in the cluster.

Azure, AWS & GCP all offer shared storage
solutions, do not use these services with
Elastic. Use block level storage and always
select the fastest disks your budget allows.

METRICS TO CONSIDER
When it comes to sizing your storage in the cluster it’s
important to understand the factors that contribute to disk
utilization outside of the data you send.

 low water mark
Should a nodes remaining disk space reach less than
15% then elastic will stop sending new shards to the node.
It should be noted that whilst new shards are not being
allocated, existing shards can still have data added to them.

 high water mark
Should a nodes remaining disk space reach less than
10% then elastic will attempt to move shards away from
the node. Elastic will move shards to other nodes with more
space in an attempt to get the nodes available disk space

85%

90%

<PART 2>

BASIC PERFORMANCE TUNING

//33

back to under 85% utilisation. Moving shards like this will
consume much of the nodes resources and that of the
nodes the shards are being reallocated to.

 replicas
Out of the box elastic is configured to have a single replica.
Organizations might look to increase this to improve the
failover capabilities of the cluster. Each replica is a full
carbon copy of the index and thus it will consume the same
amount of space.

 shards
The larger the shard the more efficient the shards ability
to store indexes to a point. You will need to experiment
with the number of shards in your cluster. Remember
though when a node fails its shards are moved to another
node’s if a replica is available.

Resource saturation and errors
Elastic automatically configures resource pools which are used to
distribute load across the clusters nodes, enabling multi-threaded
processes maximumsing nodes CPU and memory. Elastic is pretty good
at calculating the correct number of resource pools and thus it doesn’t
normally make sense to adjust this configuration. It does however
make sense to monitor the metrics whilst tweaking your platform in the
search of performance. Elastic uses the metrics ‘queues’ and ‘rejections’,
monitoring these metrics will provide visibility into your nodes ability to

<PART 2>

BASIC PERFORMANCE TUNING

//34

keep up. If you do find that nodes are unable to keep up you might need
to add more to distribute the load.

THREAD POOLS & REJECTIONS
Each node in the cluster maintains different types of thread pools. The
exact ones that will be relevant to your Elasticsearch cluster will depend
on your use case. Generally you will want to watch search, merge and
bulk, these correspond to the request type.

Starting from Elasticsearch version 7 the index
thread pool will be removed. However you
may want to monitor this pool if you’re using
a previous version of Elastic.

Each thread pool’s queue size represents the number of requests that are
waiting to be served while the node is at capacity. This queue is used to
track and serve these requests on the node. It’s used as a buffer instead
of just discarding them. Thread pool rejections take place once the thread
pool’s maximum queue size is hit.

NAME TYPE DESCRIPTION

thread_pool.search.queue
thread_pool.merge.queue
thread_pool.write.queue
(or thread_pool.bulk.queue*)
thread_pool.index.queue*

Saturation
The total number of threads
in the thread queue pool

thread_pool.search.rejected
thread_pool.merge.rejected
thread_pool.write.rejected
(or thread_pool.bulk.rejected*)
thread_pool.index.rejected*

Errors
The total number of errors
 in a thread pool

<PART 2>

BASIC PERFORMANCE TUNING

//35

METRICS TO MONITOR

 thread pool queues
The larger the queues the more resources they use up.
Moreover larger queues also introduce the chance of
losing a request if a node failure occurs. Should you see
the queues increasing steadily you might want to attempt
to slow down the rate of requests, increasing the nodes
processor count or adding more nodes to the cluster.

 bulk rejections and bulk queues
Bulk operations offer a more efficient way to send multiple
requests at one time. If you are looking to perform a large
amount of actions (create an index, or add, update, or
delete documents), then bulk operations are much better
than multiple individual requests.

If you are seeing a large number of bulk rejections this is normally related
to attempting to index too many documents in one large bulk request.
Bulk rejections are not necessarily anything to worry about. You should
however, attempt to implement a linear or exponential backoff strategy
to deal with bulk rejections

<PART 2>

BASIC PERFORMANCE TUNING

//36

<PART 3>

ADVANCED
TUNING

ADVANCED TUNING
Now that we have explored all of the essential elements to elastic,
it’s time to jump into the more complex areas that can be tuned to
increase your elastic stacks performance. It’s important to ensure
the areas covered previously in this book are applied before using
this section.

Catching slow or long running queries
Slow or long running queries eat up resources and if they are not
providing meaningful results they can be completely unnecessary.
We are going to explore how you can catch these queries as elastic
provides no restriction or priority to the user performing the query.

It’s important to have the correct logging enabled to catch these queries.
You will want to ensure that you collect the heap dump after a ‘out of
memory’ crash or the heap dump from the running JVM.

Elastic 7.0 introduced a new ‘Circuit breaker
strategy’. This provides the ability to measure
real heap memory usage at the time when
the memory was being reserved. This new
strategy improves a nodes ability to deal with
these queries. It’s enabled by default and can
be adjusted with the indices.breaker.
total.use_real_memory setting.

<PART 3>

ADVANCED TUNING

//38

Elastic provides some additional protection settings that can be applied
to safeguard the cluster against running out of memory. This setting is
the max bucket soft limit, it restricts the number of items that can be
returned in a search to 10,000 by default in Elastic 7.0 and above. It can
be amended using the search.max_buckets setting.

Additionally it is possible to narrow down long running queries with the
‘Circuit breaker’ setting in our tip. Setting indices.breaker.request.limit
to a low threshold and gradually moving up will help you run though
quieres and test their cost to resources of the cluster.

Tracking long running queries with Slow Logs
Long running queries can be reported on using Slowlogs which is a
feature that can be enabled in elastic. The feature works only on data
nodes as it works at shard level. This feature will help provide more detail
around the speed of a query and the request body.

Sample Output from json logs:
{

 “type”: “index_search_slowlog”,

 “timestamp”: “2030-08-30T11:59:37,786+02:00”,

 “level”: “WARN”,

 “component”: “i.s.s.query”,

 “cluster.name”: “distribution_run”,

 “node.name”: “node-0”,

 “message”: “[index6][0]”,

 “took”: “78.4micros”,

<PART 3>

ADVANCED TUNING

//39

 “took_millis”: “0”,

 “total_hits”: “0 hits”,

 “stats”: “[]”,

 “search_type”: “QUERY_THEN_FETCH”,

 “total_shards”: “1”,

 “source”: “{\”query\”:{\”match_all\”:{\”boost\”:1.0}}}”,

 “id”: “MY_USER_ID”,

 “cluster.uuid”: “Aq-c-PAeQiK3tfBYtig9Bw”,

 “node.id”: “D7fUYfnfTLa2D7y-xw6tZg”

}

As you can see the json response provides great detail into the queries
that are running and how long they took. The long running queries
feature can be adjusted using the below curl request to the cluster:

curl -X PUT “localhost:9200/my-index-000001/_settings?pretty”

-H ‘Content-Type: application/json’ -d’

{

 “index.search.slowlog.threshold.query.warn”: “10s”,

 “index.search.slowlog.threshold.query.info”: “5s”,

 “index.search.slowlog.threshold.query.debug”: “2s”,

 “index.search.slowlog.threshold.query.trace”: “500ms”,

 “index.search.slowlog.threshold.fetch.warn”: “1s”,

 “index.search.slowlog.threshold.fetch.info”: “800ms”,

 “index.search.slowlog.threshold.fetch.debug”: “500ms”,

 “index.search.slowlog.threshold.fetch.trace”: “200ms”,

 “index.search.slowlog.level”: “info”

}

‘

<PART 3>

ADVANCED TUNING

//40

Audit Logs
Whilst this feature is only included in clusters with a gold or premium
subscription it is still worth exploring or activating if you are lucky to have
the correct license! The audit logs feature provides much more context
around the security side of the queries running, but this can provide
valuable information whilst auditing queries. These logs will provide
information around who requested the query, when it was requested and
some context around the query itself.

Activating audit logs with the default setting
will cause excessive data to be logged. Ensure
you modify your setting to match the needs
of your organization. It is recommended
that these logs should only be enabled whilst
diagnosing issues.

ENABLING AUDIT LOGS
The following setting will need to be applied to the elasticsearch.yml
configuration file.

To enable the audit logs feature add
xpack.security.audit.enabled: true

To enable log or security audits in the output add
xpack.security.audit.outputs:[logfile, index]

<PART 3>

ADVANCED TUNING

//41

To enable authentication successes in the output logs add
xpack.security.audit.logfile.events.include:

authentication_success

NOTES:

	➜ Xpack.security.audit.outputs only applied to version 6-6.2. Version 7.0

ignores this setting and defaults to json output when xpack.security.

audit.enabled is true.

	➜ Audit mode can be very noisey resulting in excessive generation

of logs. Only use this feature whilst remediating an issue with the

cluster. Once you have completed your remediation ensure this

feature is disabled.

	➜ It is recommended to choose logfile over index due to the verbosity of

the audit logs and the stress that it will put on the cluster resulting in

performance degradation.

	➜ Audit logs will provide a very detailed picture of the queries that are

running, including the user account that ran them. This will help you

identify your slow running queries and adjust as required.

<PART 3>

ADVANCED TUNING

//42

CONCLUSION
In this book we have explored how you can monitor the metrics
of your Elastic cluster and adjust settings to exploit the very best
performance from your elastic cluster.

Tuning Elastic is a blend of settings tweaks, hardware adjustments
and software adjustments.. This book has covered the fundamental
basics to get your cluster into the best possible state, but expect to
continue to evolve your Elasticsearch cluster over time. Elasticsearch
requires maintenance regularly to keep it working at its optimum!

//43

<PART 2>

Managed, scaled,
and compliant monitoring,

built for CI/CD

Start solving your
production issues faster

https://signup.coralogix.com
https://calendly.com/coralogix-team/demo?utm_source=coralogix&utm_medium=ebook&utm_campaign=empowered_cicd&month=2020-09

	Table of Content
	Introduction
	Infrastructure
	Basic performance tuning
	How to measure performance
	Setting up Metric Beat
	Configuring Metricbeat
	Viewing monitoring metrics in Kibana
	Search performance
	Index Performance
	Garbage collection
	Compute Performance
	Cluster Health
	Storage
	Resource saturation and errors

	Advanced Tuning
	Catching slow or long running queries
	Tracking long running queries with Slow Logs
	Audit Logs

	Conclusion

	Button 21:
	Button 20:
	Button 19:
	Button 18:
	Button 17:
	Button 16:
	Button 15:
	Button 14:
	Button 13:
	Button 12:
	Button 11:
	Button 10:
	Button 9:
	Button 8:
	Button 7:
	Button 6:
	Button 5:
	page04:
	page03:
	PG 94:
	PG 95:
	PG 96:
	PG 98:
	PG 99:
	PG 100:
	PG 101:
	PG 102:
	PG 103:
	PG 104:
	PG 105:
	PG 106:
	PG 107:
	PG 108:
	PG 109:
	PG 1010:
	PG 1011:
	PG 1012:
	PG 1013:
	logo 5:
	Page 3:
	Page 5:
	Page 6:
	Page 7:

	__MENU 8:
	__MENU top:
	Page 4:
	Page 8:
	Page 37:

	__MENU 7:
	__MENU 4:
	Page 6:
	Page 7:

	logo 6:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:

	__MENU 5:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:

	logo 7:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:

	__MENU 6:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:

	FREE TRIAL 4:
	Button 2:

