
Metrics and Traces
in Kubernetes

B Y J O A N N A W A L L A C E

 3 THE INSIGHTS OF THIS EBOOK

 <PART 1>
 4 WHAT WE’LL COVER

 5 THE ROLE THAT METRICS AND TRACES PLAY
 5 Metrics
 5 Traces
 6 WHY YOU NEED OBSERVABLE SOFTWARE
 6 BUILD VS. BUY

 <PART 2>
 7 PROMETHEUS FOR KUBERNETES

 7 DEPLOYING YOUR PROMETHEUS INSTANCE
 9	 	 3.	Create	External	Prometheus	Configurations
 13 4. Create a Prometheus Deployment
 15 5. Create the Deployment
 16	 	 Configuring	Prometheus	is	Complicated
 16	 	 Deploying	Via	the	Prometheus	Operator
 17 HOW TO CONFIGURE APPLICATIONS FOR PROMETHEUS SCRAPING
 18 MAINTAINING PROMETHEUS
 18	 	 Vertical	Scaling	With	More	Memory	and	CPU	
 18	 	 Horizontal	Scaling	With	Federated	Instances	
 19	 	 Configuring	Your	Prometheus	SLAs
 19	 	 	 Local	Storage	Limits
 20	 	 	 Strategy	for	Writing	to	Disk
 20	 	 	 Sample	Retention	Time
 21	 	 This	All	Sounds	Difficult
 21 MONITORING PROMETHEUS
 21	 	 Prometheus	Self-Monitoring
 22	 	 Dead	Man’s	Switch
 23 USING GRAFANA TO VISUALIZE YOUR METRICS
 23	 	 Deploying	Grafana	Using	the	Prometheus	Operator
 24 	 Cross-Reference	Your	Logs	and	Your	Metrics
 25	 	 Declare	Your	Dashboards

 <PART 3>
 26 TRACES: THE FORGOTTEN SIBLING

 27 THE TOOLING OPTIONS FOR TRACING
 27	 	 Jaeger
 27	 	 	 How	to	Deploy	Jaeger
 28 ISTIO SERVICE MESH
 28	 	 Features	of	Istio	Service	Mesh
 29	 	 Deploy	Istio	to	Get	a	Configured	Kiali	Instance
 29 TRACING CAN HAVE SOME DRAWBACKS
 29	 	 The	Sudden	Spike	in	Data
 29	 	 Tracing	is	Very	Intrusive
 30 HOW YOUR LOGS CAN HELP WITH TRACING
 30	 	 Session	IDs	in	All	Logs

 <PART 4>
 31 BUILD VS. BUY

 32	 	 Open	Source	Isn’t	Free
 32	 	 	 The	Challenge	of	Tool	Sprawl
 32	 	 When	is	Open	Source	a	Good	Idea?
 33 HOW CAN A SAAS OBSERVABILITY PROVIDER WORK FOR YOU?
 33	 	 A	Word	of	Warning	With	SaaS	Observability	Providers
 34	 	 How	Can	Coralogix	Bring	You	World-Class	Observability?	

 35 CONCLUSION

//3

INTRODUCTION
The era of the monolith has come to an end, though companies are still

working on migrating their black-box code to microservices. Microservices
give flexibility in scaling, deployments without service disruptions, and fast

feature integrations previously unobtainable.

As the industry moved toward microservices, developers found the need
for containers that could hold unique runtimes. Containers save the cost of

owning a server for each runtime and ensure all developers and all container
deployments have the same setup. Containers are portable, isolated, and

consistent, allowing code to run from privately owned hardware. More
features were added to container orchestration tools, making them even

more appealing.

Container orchestration tools like Kubernetes automate containers’
provisioning, deployment, scaling, networking, and lifecycle. While these

tasks may be done manually or using scripts, developers would have
difficulty managing hundreds or even thousands of containers as busy
production environments require. Container orchestration tools were

designed to handle this work easily and report back information about the
health of clusters.

Kubernetes, a tool maintained by the CNCF, is the industry standard, open-
source container orchestration tool. Recording, visualizing, and analyzing

this information, coming in the form of metrics, traces, and logs, is critical for
maintaining the health of any production environment.

WHAT WE’LL
COVER
This eBook will focus on metrics forming
the backbone of alerting and monitoring in
Kubernetes. It will also discuss how traces are
sorely needed and an often-forgotten tool that is
crucial for container observability. Examples will
discuss exporting metrics using Prometheus, and
examples using traces will use Jaeger.

<PART 1>

//5

THE ROLE THAT METRICS AND TRACES PLAY
Metrics
Kubernetes clusters are composed of several components. Generally, a
cluster will contain a primary node and one or more running worker nodes.
Metrics for Kubernetes indicate how nodes in the cluster are running. Traces
give insight into the flow of data and commands throughout a cluster.

Autoscaling is a feature of container orchestration tools like Kubernetes
that draws software engineers. Metrics are used in both cases to detect
the cluster’s health and automatically react to ensure the core functionality
of the cluster is maintained. Horizontal autoscaling will adjust the number
of replicas in an application, vertical autoscaling adjusts the limits of a
container and the resource requests it can handle, and cluster autoscaling
adjusts the number of nodes present in a cluster. Each of these autoscalers
relies on monitored metrics to know when to take action.

There are built-in metrics that can provide information about when to scale,
such as the number of requests per second hitting a particular app. When
the number of requests increases beyond a target value, Kubernetes will
automatically horizontally scale the app by adding more replicas.

Custom metrics may be necessary for complex applications to ensure your
app functions appropriately. For example, you may have a queue internal
to a node that can handle a certain amount of traffic. If the traffic hitting
a particular node reaches a threshold, autoscaling should kick in again to
adjust the number of nodes present to handle the increased traffic. Since
this is a custom solution, the default Kubernetes metrics will not handle this
case. Developers can use external metrics tools like Prometheus to handle
custom cases.

Traces
While metrics help identify problems, traces enable teams to troubleshoot
the issue. Distributed systems are difficult to troubleshoot since logs are
stored separately for each component. Traces provide data that will link logs

WHAT	WE’LL	COVER<PART 1>

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

//6

together so logs for the same event can be connected across components.

Traces are unique to microservice architectures like Kubernetes since they
were not needed to troubleshoot monolithic software. Trace data enables
teams to follow specific requests throughout the software, visualizing what
different services it calls and what dependencies it requires.

Teams can use visualizations of trace data to simplify error detection. Since
traces track requests throughout the system, traces can be compared to
design and expected behavior to indicate where the system is healthy and
detect where it is not. Traces show when and where a service or request
failed and when the data processing is slow.

WHY YOU NEED OBSERVABLE SOFTWARE
Observable software allows teams to reduce product downtime, improve
security, optimize cost, and enhance functionality. Observability becomes
especially important with microservices because the system is constantly
changing. Services will automatically scale to handle both increases and
decreases in traffic, and each of these services requires monitoring.

Metrics provide at-a-glance data indicating if your cluster is healthy,
performing effectively, and using resources efficiently. Generally, low-level,
static metrics without context do not provide sufficient information for
developers to fix issues or enhance architecture. When visualizations show
metrics in context with other relevant metrics, logs, and traces, and even
with historical behavior, developers can quickly solve problems and may
avoid downtime altogether. With a complete set of information including
all pillars of observability, troubleshooting and maintaining the system is
less cumbersome.

BUILD VS. BUY
We’ll explore whether it’s worth it to build your solutions from the ground
up, or to buy off the shelf products. We’ll look at some of the pros and cons
for each approach and why you need to tailor your strategy to the specific
needs of your business.

WHAT	WE’LL	COVER<PART 1>

https://coralogix.com/pricing/
https://coralogix.com/pricing/
https://go.coralogix.com/rs/371-WTH-691/images/Metrics%20and%20Observability%20eBook%20.pdf
https://coralogix.com/blog/understand-three-pillars-observability/

PROMETHEUS
FOR
KUBERNETES
DEPLOYING YOUR PROMETHEUS INSTANCE
There are several ways to deploy Prometheus to monitor
Kubernetes. Here, we will deploy Prometheus in a monitoring
namespace of an existing Kubernetes node. Before deploying
your Prometheus instance, you should have a Kubernetes
cluster running with kubectl. You can find the latest version of
Prometheus as a download available through docker.

<PART 2>

https://hub.docker.com/r/prom/prometheus/

//8

1. Create a Namespace

Namespaces provide a way for Kubernetes to isolate groups of resources
in a single cluster. Prometheus designers intended namespaces for
environments with many users or multiple teams, such as development
and DevOps teams. By default, deployed objects on Kubernetes will use
the default namespace. Configure a new namespace for monitoring using
Prometheus using the command below.

kubectl create namespace monitoring

2. Create a Cluster Role

Prometheus collects logs by making requests against Kubernetes APIs.
These APIs hold metrics from Nodes, Deployments, and other Kubernetes
constructs and any custom metrics configured in code. Kubernetes
recommends that Kublets run with authentication and authorization enabled,
so for Prometheus to read from these APIs, it must have the appropriate
permissions. Kubelet needs to be configured with role-based access control
(RBAC) to grant these permissions. The setup here is then used in the
following step defining the configuration for Prometheus.

Use the following YAML file to configure the Kubelet for Prometheus. Name
the file rbac.yaml and use it to create the role with the following command:

kubectl create -f rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: prometheus

rules:

 - apiGroups: [“”]

 resources:

 - nodes

 - nodes/metrics

 - services

PROMETHEUS	FOR	KUBERNETES<PART 2>

//9

 - endpoints

 - pods

 verbs: [“get”, “list”, “watch”]

 - apiGroups:

 - extensions

 - networking.k8s.io

 resources:

 - ingresses

 verbs: [“get”, “list”, “watch”]

 - nonResourceURLs: [“/metrics”, “/metrics/cadvisor”]

 verbs: [“get”]

apiVersion: v1

kind: ServiceAccount

metadata:

 name: prometheus

 namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: prometheus

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: prometheus

subjects:

 - kind: ServiceAccount

 name: prometheus

 namespace: default

3. Create External Prometheus Configurations

Prometheus configuration can be done using both the command line and a
configuration file. The configuration file defines settings related to scraping

PROMETHEUS	FOR	KUBERNETES<PART 2>

//10

jobs and loaded rule files containing settings for alerts and recordings.

Create the config map in Kubernetes. Setting up Prometheus this way
ensures you don’t need to build the Prometheus image when a configuration
change is needed. Restart the Prometheus pods to apply configuration
changes. Create a config_map.yaml file based on the required Prometheus
settings, and use the following command to create the config map inside the
container. Put both the rules and config into the same file to be loaded into
the Prometheus server by the following command:

kubectl create -f config_map.yaml

The outline of the config_map.yaml file is shown below. This setup will
scrape for the services in your Kubernetes cluster. You can customize the
configuration according to your needs in the monitoring setup. Prometheus
provides a complete document for what can be configured.

apiVersion: v1

kind: ConfigMap

metadata:

 name: prometheus_configuration

data:

 prometheus.rules: |-

 groups:

 - name: devopscube demo alert

 rules:

 - alert: High Pod Memory

 expr: sum(container_memory_usage_bytes) > 1

 for: 1m

 labels:

 severity: slack

 annotations:

 summary: High Memory Usage

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

//11

 prometheus.yml: |-

 global:

 scrape_interval: 10s # How frequently to

scrape targets (default = 1 minute)

 evaluation_interval: 10s # How frequently to

evaluate rules (default = 1 minute)

 rule_files: # Rules will be read

from all matching files listed below

 - /etc/prometheus/prometheus.rules

 alerting: # Settings related to

the alert manager

 alertmanagers:

 - scheme: http

 static_configs:

 - targets:

 - “alertmanager.monitoring.svc:9093”

 remote_write: # Use remote_write to

send logs to long-term storage on a third-party tool

 # Contact Coralogix

for specific setup to use with Prometheus

 url: <coralogix.org>

 name: test_coralogix

 remoteTimeout: 120s

 bearerToken: <private_key>

 scrape_configs: # A list of scrape

configurations

 - job_name: ‘node-exporter’ # Job name must be

unique across all scrape_configs definitions

 scrape_interval: 5s # Overwrite the

global scrape_interval above if needed

PROMETHEUS	FOR	KUBERNETES<PART 2>

//12

 kubernetes_sd_configs:

 - role: endpoints

 relabel_configs: # Dynamically rewrite

the label set of a target

 - source_labels: [__meta_kubernetes_endpoints_

name]

 regex: ‘node-exporter’ # Regular expression

against which the extracted value is matched

 action: keep # Action to perform

based on the regex matched (default = replace)

 - job_name: ‘kubernetes-apiservers’

 kubernetes_sd_configs:

 - role: endpoints

 scheme: https

 tls_config:

 ca_file: /var/run/secrets/kubernetes.io/

serviceaccount/ca.crt

 bearer_token_file: /var/run/secrets/kubernetes.

io/serviceaccount/token

 relabel_configs:

 - source_labels: [__meta_kubernetes_namespace,

__meta_kubernetes_service_name, __meta_kubernetes_

endpoint_port_name]

 action: keep

 regex: default;kubernetes;https

 - job_name: ‘kubernetes-nodes’

 scheme: https

 tls_config:

 ca_file: /var/run/secrets/kubernetes.io/

serviceaccount/ca.crt

 bearer_token_file: /var/run/secrets/kubernetes.

io/serviceaccount/token

PROMETHEUS	FOR	KUBERNETES<PART 2>

//13

 kubernetes_sd_configs:

 - role: node

 relabel_configs:

 - target_label: __address__

 replacement: kubernetes.default.svc:443

Replacement value to use in place of regex-matched

values

 - job_name: ‘kubernetes-pods’

 kubernetes_sd_configs:

 - role: pod

 - job_name: ‘kube-state-metrics’

 static_configs:

 - targets: [‘kube-state-metrics.kube-system.

svc.cluster.local:8080’]

 - job_name: ‘kubernetes-cadvisor’

 scheme: https

 tls_config:

 ca_file: /var/run/secrets/kubernetes.io/

serviceaccount/ca.crt

 bearer_token_file: /var/run/secrets/kubernetes.

io/serviceaccount/token

 kubernetes_sd_configs:

 - role: node

 - job_name: ‘kubernetes-service-endpoints’

 kubernetes_sd_configs:

 - role: endpoints

4. Create a Prometheus Deployment

Create a file named prometheus_deployment.yaml that will contain the
deployment definition. This will link to the configuration file defined in

PROMETHEUS	FOR	KUBERNETES<PART 2>

//14

earlier steps. The YAML file should contain the following:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: prometheus_deployment

 namespace: monitoring

 labels:

 app: prometheus-server

spec:

 replicas: 1 # The number of desired replicas to

set

 strategy: # Define how updates are performed

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 selector: # Defines how the replicate set

targets pods

 matchLabels:

 app: prometheus-server

 template: # The pod template applied to each

pod in the set

 metadata:

 labels:

 app: prometheus-server

 annotations:

 prometheus.io/port: “9090”

 spec: # Specifies how each container will

run

 containers:

 - name: prometheus

 image: prom/prometheus # The docker

image that will run

 args:

PROMETHEUS	FOR	KUBERNETES<PART 2>

//15

 - “--storage.tsdb.retention.time=24h”

 - “--storage.tsdb.path=/prometheus/”

 - “--config.file=/etc/prometheus/prometheus.

yml”

 ports:

 - containerPort: 9090

 resources:

 requests:

 cpu: 500m

 memory: 500M

 limits:

 cpu: 1

 memory: 1Gi

 volumeMounts:

 - name: prometheus-config-volume

 mountPath: /etc/prometheus/

 - name: prometheus-storage-volume

 mountPath: /prometheus/

 volumes: # Defines external volumes or

directories mounted into the containers

 - name: prometheus-config-volume

 configMap:

 name: prometheus-config

 - name: prometheus-storage-volume

 emptyDir: {}

5. Create the Deployment

Finally, deploy the Prometheus configuration by running the following
command:

kubectl create -f prometheus-deployment.yaml

PROMETHEUS	FOR	KUBERNETES<PART 2>

//16

Configuring Prometheus is Complicated
During Step 3 of the tutorial above we showed a simple configuration for
Prometheus. Whether you are using Prometheus for the first time or running
it in a production environment, writing a configuration file is a daunting
task. Prometheus’ documentation shows just how many settings can be set
to customize how Prometheus runs in your application. The learning curve
on configuring Prometheus in an ideal way is very steep and operational
knowledge of how to decide what configurations to use comes with time
and experience.

Kubernetes introduced the Operator Framework to help lower the barrier
to setting up tools like Prometheus in clusters. The operator built for
Prometheus has a sample configuration built in that will help developers get
started with Prometheus quickly.

Deploying Via the Prometheus Operator
The Operator Framework provides a way to build native applications on
Kubernetes in an automated way. This open-source software is a software
development kit that provides a way to package, deploy, and manage
Kubernetes applications. Using this framework, developers have created
operators for specific applications like Prometheus so it can be deployed
with already-integrated operational knowledge from its designers.

Deploying Prometheus on Kubernetes can easily get complex as you move
into a production environment and need to really hone in your needed
configuration. The Prometheus operator aims to give developers a fully
automated way to deploy a Prometheus server on Kubernetes without
needing to configure files as we did in the previous step. The Prometheus
operator provides the Prometheus server, Alertmanager, secrets, and
config map setup. It will also automatically discover targets that need to be
monitored by using common Kubernetes label queries like what was done in
the config_map.yaml file above.

To quickly deploy only the Prometheus Operator inside a cluster, simply

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://operatorframework.io/

//17

choose a release from the repository and run the following command:

kubectl create -f bundle.yaml

The Prometheus operator project is still in active development by the
CNCF, and not all features have been developed at this point. There are still
planned features to be delivered to improve how developers can use the
Prometheus Operator. All changes are guaranteed to be reverse compatible.

Developers can also enhance the setting on the Prometheus operator with
additional configurations like setting a remote write for long-term storage
and analysis of metrics.

HOW TO CONFIGURE APPLICATIONS FOR
PROMETHEUS SCRAPING
The scrape configuration is set in the Prometheus config-map.yaml file
described in step 3 of Deploying your Prometheus Instance. The scrape_
config section of the file specifies how to scrape a set of specified targets.
The configuration can be specified for a single job or multiple jobs in more
complex architectures. The scrape targets set can be listed statically or
dynamically if labels should change at scrape time.

The scrape_config section also supports an attribute called kubernetes_sd_
config. This array holds a list of Kubernetes service discovery configurations
that let users define the targets to scrape on the Kubernetes cluster. Each
target on Kubernetes will be deployed with a REST API that stays in sync
with the cluster state and will give Prometheus this information when it is
polled. Targets include nodes, services, pods, endpoints, endpoint slices, and
ingress. Each target includes several various labels giving information about
the status of the target.

This scraping configuration is potent, allowing Prometheus to collect what
the developer deems most important to observing Kubernetes cluster
health. Developers can scrape all available endpoints or just a couple

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://github.com/prometheus-operator/prometheus-operator
https://coralogix.com/docs/prometheus/
https://coralogix.com/docs/prometheus/

//18

depending on the use case, giving a lever between data storage and cost.

MAINTAINING PROMETHEUS
Vertical Scaling With More Memory and CPU
Prometheus is a monitoring system, but when you look behind the curtain
at how Prometheus functions, it is a time-series database. As with any
database, scaling needs to be a first consideration for designing how it will
fit into your system. Prometheus’s storage is limited to the scalability of
memory and CPU of a single node due to its inherent design.

Vertical scaling can be done on your Prometheus implementation, but this
type of scaling is limited to local storage on a single node. Also, because
Prometheus runs on a single node, locally stored data is not durable and
will be lost if the node crashes. Prometheus is known to require a lot of
memory since it is directly tied to the number of time-series metrics logged.
In production environments, the required memory can snowball. Prometheus
provides options for removing data from local storage to clear space to
solve this problem. You could also reduce the duration metrics are stored, or
remove metrics not needed past checking for alerts.

Since local storage is not clustered or replicated, it should be treated like
a single node database where a remote backup is configured, so data is
not lost in the case of a node failure. Prometheus offers an interface that
writes to and reads from external long-term data stores, and this solves the
durability problem and allows developers to clear locally-stored memory
earlier. Third-party storage could also use the Prometheus metrics to
analyze data and enhance system observability.

Horizontal Scaling With Federated Instances
When starting with a Prometheus server in Kubernetes, it is a common
starting point to keep one Prometheus server per cluster. But, as your
service grows to multiple data centers, it becomes difficult to review metrics
from each Prometheus server since they do not communicate. One solution
when this setup is used is to create a global Prometheus server that uses

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://coralogix.com/docs/prometheus/

//19

federation to collect aggregated time-series data from lower-level servers.
Another similar federation setup uses this global server to scrape data from
other servers.

While the concept of federation is simple, the implementation is more
complicated. Several things need to be considered by your architecture
when setting up either type of federation in Prometheus, including

 → Which metrics will be sent to the global server since memory is limited
in each Prometheus server?

 → How will the global server scale vertically?

 → How will the data transfers be secured since Prometheus
uses HTTP calls?

 → How much will the data transfers cost?

Rather than scaling with federated instances, use an external tool to collect
the data from each of your Prometheus servers and store it. If already using
this tool for long-term storage, this can be exceptionally efficient. The data
from all Prometheus servers running is not only collected in one location but
can also be visualized and analyzed in the same service.

Configuring Your Prometheus SLAs
Before setting up a Prometheus instance, you should have a sense of the
limits inherent to the tool. Understanding the limits of the metrics ensures
you are aware of what Prometheus can collect with your configuration
and when you need to change your configuration or enhance it with other
tools. While this list of SLAs is not complete, it is a good indication of the
design that developers should address before creating a production-grade
Prometheus server.

Local Storage Limits
Prometheus has limits for how many time series chunks (or samples) it
can ingest simultaneously. This limit is based on the node’s heap size and
can be reset with the storage.local.target-heap-size setting. By default,

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://coralogix.com/platform/metrics/

//20

Prometheus can handle about 200,000 time-series chunks present on the
heap at one time. Beyond this, sample ingestion is throttled, which will
cause scrapes to be skipped and alerts to be missed. The recommended
value for storage.local.target-heap-size is two-thirds of the physical
memory limit Prometheus should not exceed.

Strategy For Writing to Disk
Under ideal conditions, data would be written to disk as soon as possible,
so it is present in permanent storage. However, if this is done too frequently
with write operations handling small amounts of data, the I/O bandwidth
would be consistently consumed, and the disk behavior would appear
slow. By default, Prometheus will batch write operations with an adaptive
strategy, which attempts to balance I/O bandwidth usage with the potential
amount of data lost in case of a crash. To move away from this strategy, use
the storage.local.series-sync-strategy flag.

Using the adaptive strategy, Prometheus will calculate the urgency of
writing chunks to disk. The higher the urgency (on a scale of 0 to 1),
the more frequently chunks are written to disk. Beyond a value of 0.8,
Prometheus will enter rushed mode, where it takes shortcuts to disk writing
to ensure the heap is cleared. It will stop syncing files after write operations,
reduce checkpoint creation, and turn off the throttling of write operations
to persist chunks. When the urgency score hits a value of 1, throttling of
ingestion will occur, and data will be lost.

Sample Retention Time
The sample retention time can be set depending on your analytics needs.
The more extended data is held for, the more memory will be required to
hold the data in the local Prometheus store. Long retention is considered
anything longer than one month. Retention time can be adjusted with the
storage.local.retention flag.

When relatively small amounts of data are removed from storage as they
expire, you can use the storage.local.series-file-shrink-ratio flag to avoid

PROMETHEUS	FOR	KUBERNETES<PART 2>

//21

rewriting large files. The flag represents the percent of the time series being
removed from the file that will trigger a rewrite. For example, if the value is
0.2, then 20% of the time series will need to expire before the file will be
rewritten and the data removed. The tradeoff is wasting disk space which
will need to be considered in settings.

This All Sounds Difficult
Setting up, monitoring, and tweaking settings on a Prometheus cluster
is not a simple task. Developers need to know not only what settings
are available for change but how one setting’s value will affect other
aspects of the server’s behavior. Tweaking is not something you want to
do in a production environment when data loss can be catastrophic, but
unfortunately, sometimes it is unavoidable. To avoid data loss, set up and
test in an environment as close to your production setup as possible. With
deployments on Kubernetes, spinning up a staging cluster to test can be
helpful, albeit costly, for scale testing your cluster.

MONITORING PROMETHEUS
Prometheus is used to monitor distributed systems like Kubernetes. But,
developers must not discount that Prometheus itself also needs to be
monitored. At any given time, developers should be able to know that the
metrics collected are accurate. It is widespread for developers setting up
the first Prometheus instance in production to have failures. If you can know
how to spot the tell-tale signs of an impending crash, Prometheus usually
gives you a way to scale before the crash occurs. The trick is to catch the
issue before it happens because if your Prometheus server crashes, it takes
your metrics with it.

Prometheus Self-Monitoring
Prometheus exposes data about itself in the same way a Kubernetes cluster
does. So, while developers can configure Prometheus servers to monitor
Kubernetes, they can also configure the servers to monitor themselves or
another Prometheus server.

PROMETHEUS	FOR	KUBERNETES<PART 2>

//22

Prometheus servers expose internal metrics on an endpoint named /metrics.
By default, they will appear on port 9090, but developers can configure the
port if needed. Metrics that are useful for monitoring to ensure data are sent
to remote storage appropriately include:

 → prometheus_remote_storage_failed_samples_total: a counter
of the total number of samples that failed to send to remote
(long-term) storage

 → prometheus_remote_storage_dropped_samples_total: a counter
of the total number of samples that Prometheus dropped because
the queue was full

 → prometheus_remote_storage_queue_length: The number of processed
samples in the queue to send to remote (long-term) storage

 → prometheus_remote_sent_batch_duration_seconds: a histogram of the
duration of sample batch calls to remote storage

Dead Man’s Switch
A dead man’s switch is a system that requires a human to intervene;
otherwise, the system triggers some event automatically. In Prometheus,
Dead Man’s switch is an alert manager webhook service for Prometheus.

Developers create an alert using a simple expression that always returns
true. Then, configure an alert manager that will recognize this alert and
expect to receive it periodically. Developers can configure the alert manager
to notify them if the signal is not received and the Prometheus server has
gone down.

The dead man’s switch is a single concept with Prometheus, but there
are many different ways to implement it depending on your toolkit. But,
whatever you use, you must have a tool outside the monitored Prometheus
server to send an alert. This tool could be another Prometheus server with
an alert manager setup or another cloud service like AWS Lambda that will
receive the alert through an API.

PROMETHEUS	FOR	KUBERNETES<PART 2>

//23

USING GRAFANA TO VISUALIZE YOUR METRICS
Grafana is an open-source software stack that includes tools to visualize
and alert on your metrics. Prometheus does include a tool called the
Prometheus Dashboard, but it is most useful for quick data queries. Grafana
is a complete visualization tool allowing developers to customize graphs and
set up metric alerts.

Deploying Grafana Using the Prometheus Operator
Just like the Prometheus operator, there is an operator pattern set up
for deploying Grafana. Using the Grafana Operator instead of a Helm
deployment means developers automatically access operational knowledge
from Grafana designs. This includes the ability to comanage and configure
Grafana with Kubernetes resources like the config maps we used earlier to
set up Prometheus. The Grafana Operator also gives automation of tools like
the Grafana dashboard plugins and Oauth proxy. The Grafana Operator is a
great tool, but since we also need the Prometheus Operator, we can use the
kube-prometheus project to install and configure both tools.

To quickly set up your monitoring, clone kube-prometheus from Github
using the following command:

git clone https://github.com/prometheus-operator/kube-

prometheus.git

Once downloaded, cd into the Kubernetes project’s root directory. Deploy
kube-prometheus using the following commands. Note that it may be
necessary to run the kubectl create command several times before all
components are successfully created.

Create the namespace and custom resource definitions

(CRD), and then wait for them to be available before

creating the remaining resources

kubectl create -f manifests/setup

PROMETHEUS	FOR	KUBERNETES<PART 2>

https://github.com/prometheus-operator/kube-prometheus

//24

Wait until the “servicemonitors” CRD is created. The

message “No resources found” means success in this

context.

until kubectl get servicemonitors --all-namespaces ; do

date; sleep 1; echo “”; done

kubectl create -f manifests/

You now have access to Grafana and can view your dashboard using the
following command. After running the command, point a web browser
to http://localhost:3000. The default login uses admin for both username
and password.

kubectl --namespace monitoring port-forward svc/grafana

3000

Cross-Reference Your Logs and Your Metrics
For the Grafana dashboard to be effective, you need a way to correlate your
logs with your metrics so developers can easily navigate issues. When you
do not have all your logs, metrics, and traces in one place, developers need
to look to Grafana for metrics but then open other tools to check logs or
traces to understand what happened.

Since it is an open-source tool, developers can send data to Grafana from
different tools. Data can flow in from Prometheus with our existing setup,
but it is helpful to have all your data recorded in one place. If you’ve set
up Kubernetes logging, you could also export your logs to Grafana for
visualization.

Grafana’s Loki does offer a way to correlate your logs to metrics in Grafana.
The tool can be used to view both metrics and logs using ad-hoc queries for
incident investigations. Loki was not designed to replace analytical solutions,
so cannot replace solutions that offer full observability and analytics on your
logs, metrics, and traces.

PROMETHEUS	FOR	KUBERNETES<PART 2>

http://localhost:3000
https://coralogix.com/wp-content/uploads/2022/03/eBOOK_04-kubernetes_v6.pdf
https://coralogix.com/blog/grafana-loki-open-source-log-aggregation-inspired-by-prometheus/
https://coralogix.com/platform/

//25

Declare Your Dashboards
Once you have Grafana deployed, you can customize the dashboard to
hold data useful for analyzing your own system. One issue with
dashboards is they are destroyed when a Kubernetes pod is rebooted.
This can happen during a regular update or after a crash has occurred.
To get around this problem, define the GrafanaDashboard custom resource.
This definition allows Grafana to detect defined dashboards and instantiate
them when needed.

PROMETHEUS	FOR	KUBERNETES<PART 2>

TRACES: THE
FORGOTTEN
SIBLING
Developers tend to lean on logs and metrics when
setting up microservice observability data collection.
While these are both important for gaining visibility into
your system, they do not inherently give enough context
to understand or troubleshoot problems.

Traces are a construct specifically useful for
microservices. They add a snippet of unique data to
each request, giving the ability to follow it throughout
your cluster and understand where it might run into
errors or bottlenecks. In a microservice where a request
will travel to different functions or pods, being able to
track a request for its entire lifespan is an invaluable
tool to developers trying to troubleshoot a problem.

<PART 3>

//27

THE TOOLING OPTIONS FOR TRACING
There are currently two open-source solutions for monitoring traces in
Kubernetes: Jaeger and the combination of Kiali and Istio. These services can
all be used in your Kubernetes cluster since they bring different information
to your monitoring solution.

Jaeger
Like Kubernetes, the CNCF maintains Jaeger. It is an open-source distributed
tracing system used to monitor and troubleshoot microservice architectures
like Kubernetes. Jaeger can propagate the distributed context to other data
like logs, monitor distributed transactions, optimize performance across your
cluster, and more. Using Jaeger, a DevOps user can follow a request’s path
throughout a distributed system with a visual representation and identify
any problem areas such as where the data’s flow is slowed.

How to Deploy Jaeger
Deploying Jaeger is complicated because of its architecture. There are
clients, agents, and collectors to set up to start the tracing software. Luckily,
Jaeger has built an operator to ease the operational complexity of this
deployment. Use the following command to get the Jaeger Operator and
add Jaeger to the monitoring namespace.

kubectl create -f https://github.com/jaegertracing/

jaeger-operator/releases/download/v1.36.0/jaeger-

operator.yaml -n monitoring

By default, the operator is installed in cluster mode and will watch for
Jaeger-related events in all namespaces, watch the namespaces themselves,
and batch all deployments to inject or remove sidecars. To only watch a
specific namespace, change the ClusterRole and ClusterBindingRole of the
operator manifest to Role and RoleBinding, respectively. Also, the WATCH_
NAMESPACE environment variable should be set to the namespace to watch.

TRACES:	THE	FORGOTTEN	SIBLING<PART 3>

//28

ISTIO SERVICE MESH
Istio is a service mesh that manages communications between
microservices. Service meshes run on sidecar proxies on software nodes.
While Istio was designed to run on any platform, it is commonly used
with Kubernetes clusters. Software architectures can include hundreds or
thousands of Kubernetes nodes that need to communicate with each other.
Istio service mesh enables that communication by tracking, queuing, and
securing data as it flows from one node to another.

Istio can provide enhanced traffic resilience, collect service-level metrics,
provide distributed tracing, improve security, and more. Istio leverages
distributed tracing systems like Jaeger to send traces throughout the
microservice architecture.

Features of Istio Service Mesh
Istio packs a large punch for platform observability. It is highly configurable,
allowing DevOps teams to record traces, logs, and metrics. The biggest
feature of a service mesh is its unique ability to create and collect
communication data with traces. Since data communicating between
nodes is sent through the Istio proxy sidecar, trace data can consistently
be added. This means that the route data takes throughout the Kubernetes
cluster can be easily tracked and used in conjunction with other observability
tools for troubleshooting.

Whenever nodes are communicating, security must be considered. Istio has
built-in encryption, authentication, and authorization capabilities to secure
data as it flows through software. Further, by using built-in Istio security
features, all these capabilities will be configured in one place. This reduces
the engineering time needed to set up a custom configuration and also
reduces maintenance since all the setup is done only once.

Istio also improves the reliability of Kubernetes platforms by providing load
balancing and traffic routing to the sidecar proxies. Istio is able to detect
when a node is down or overloaded and can hold back messages until a

TRACES:	THE	FORGOTTEN	SIBLING<PART 3>

//29

node is ready to receive them.

Deploy Istio to Get a Configured Kiali Instance
Istio is a tool that provides observability of your Kubernetes cluster. It
provides metrics, traces, and logs that show how monitored services interact
with each other. Developers can also configure Istio to monitor multiple
clusters with a single mesh.

Istio can be set up to integrate with other observability tools. Kiali can be
used to observe the health of the Istio configuration. It can export data to
Grafana dashboards to visualize mesh data and also to Jaegar to log traces.

While Istio is a powerful tool, if you already have other services set up to
collect metrics, traces, and logs, it may be more than you need. Since the
memory and computational requirements of observability tools can be high,
collecting redundant data is not ideal. Istio is a good option for new software
builds or software that does not have integrated observability tools.

TRACING CAN HAVE SOME DRAWBACKS
The Sudden Spike in Data
Jaeger data requires external storage. Each event flowing through
each microservice will receive trace data that is recorded and stored.
Both Elasticsearch and Cassandra are available for storage, but Jaeger
recommends using Elasticsearch because of its horizontally-scalable
storage and fast search capabilities and Elastic’s APM server, which is wire
compatible with trace data from the Jaeger agent. Production systems will
end up with a large spike in data required for long-term storage to keep
traces, more so than metrics require.

Tracing is Very Intrusive
Istio and Jaeger are both deployed as sidecars on Kubernetes pods. The
sidecar will intercept traffic entering and exiting the pod and record the
trace in the defined storage location. In production, busy applications will
have significant traffic and required interceptions. When using Istio, each

TRACES:	THE	FORGOTTEN	SIBLING<PART 3>

//30

microservice data flow will record two spans: one from the client sidecar
and one from the server sidecar. These spans are then sent to a system like
Jaeger for data storage. The volume of data collected by the sidecar can
slow the delivery of the data flows they are trying to record. Further, ensure
that connections between client and collector use a reverse proxy in front of
collectors to ensure the trace data collected is secure.

HOW YOUR LOGS CAN HELP WITH TRACING
Implementing traces is much easier done when writing new code; traces
can be added to endpoint calls from the code’s setup. Adding traces is
more cumbersome if you have existing code because edits are required on
existing functions. Further, if nodes along a data path are missing traces,
the nodes with the information cannot be accurately used for observability.
A different way to gather trace information is to leverage existing logs to
collect the data.

Session IDs in All Logs
Trace data adds identifiers to inputs from endpoints so they can be tracked
through a distributed architecture. These identifiers allow tools to visualize
how long inputs take to flow through the architecture and will also show if
they are dropped in a service. Trace data includes the overhead required to
record these sessions and visualize the data.

Assuming the system contains logs, these can be leveraged to include trace
data. Each log could have a consistent session identifier added to them.
The session identifier would indicate the same information as the collected
trace data would have but would have an added advantage of always being
associated with the appropriate log data.

An MDC (mapped diagnostic context) tool can extract the session identifier
and display the log data in a similar format to a trace. Once extracted, the
log timestamp and the identifier data can be used to visualize traces in the
same way they would be when using a tool like Jaeger to collect trace data.

TRACES:	THE	FORGOTTEN	SIBLING<PART 3>

https://coralogix.com/docs/coralogix-log4j-integration/
https://coralogix.com/docs/coralogix-log4j-integration/

BUILD VS. BUY
When embarking on any new software venture, a
good engineer should consider the implications of
each decision, to ensure that the finished product
serves the needs of the business, in a cost-effective
way. This mission inevitably leads to a
“build vs buy” conversation.

<PART 4>

//32

Open Source Isn’t Free
Open source is free of licence and support costs. This means that you don’t
add any new subscriptions to your operational costs, and you are in full
control of the solution that you’ve built. However, this doesn’t mean that
your open source solution is free. The costs are very real:

 → Initial setup costs are incurred when you deploy and experiment with
the product to get it working.

 → Ongoing engineering effort to build and maintain the necessary features
that the open source product inevitably lacks.

 → Operational costs in maintaining your solution, once it reaches
a steady state.

 → The opportunity cost because as a company, you’ve focused on building
your new observability platform, and not your core product.

The Challenge of Tool Sprawl
In addition to these obvious costs, there is a more insidious cost in the open
source landscape. Open source tooling tends to do one thing, and one thing
well. If you decide to follow a fully open source observability stack, you’re
going to be spending time knitting together a variety of tools, in order to
build out the feature set you need.

This variety of tools increases the learning curve and complicates your
stack, which in turn drives the aforementioned costs - it takes longer to do
anything, because with more moving parts in your observability stack comes
a higher chance of complications.

When is Open Source a Good Idea?
There are some clear arguments for building your own solution. The
most common is that if you build your own platform, you have much
more freedom to change and rebuild features as you need. If you’re doing
something highly specialised, or your primary product is your observability
data, it’s a good argument for favouring flexibility over speed. In this case,

BUILD	VS.	BUY<PART 4>

//33

it’s then up to you to look at the economics.

Is the flexibility you get from your open source and custom code solution
worth the upfront cost, tool sprawl, maintenance effort and opportunity cost
involved in building your own custom observability solution? If the answer is
yes, then build away! If you’re not so sure, then keep reading, because there
are other options on the market.

HOW CAN A SAAS OBSERVABILITY PROVIDER
WORK FOR YOU?
SaaS solutions come with some excellent benefits, that directly remedy the
major hidden costs of open source and custom solutions:

 → There is very little upfront cost, because this cost is spread out in the
form of a subscription.

 → You should spend far less time configuring your SaaS solution,
meaning you don’t incur the same opportunity cost.

 → There is no ongoing engineering effort to build and maintain
new features.

All of these things form a compelling case for why most organizations
should focus on SaaS solutions, rather than spending precious time and
money working on something that has very little to do with your product.

A Word of Warning With SaaS Observability Providers
Many SaaS observability providers attempt a “land and expand” strategy.
This means they make an agreement with a company, install lots of
proprietary software onto the customer’s infrastructure, and make it as
difficult as possible for that customer to switch in the future. If you’re
concerned with vendor lock-in, then a key measurement is if your provider
offers a fully open source integration path.

This enables you to switch back to your existing stack, or to a different
provider, if you need to. It’s important to ensure that you don’t fall prey

BUILD	VS.	BUY<PART 4>

//34

to these strategies, which are designed to extract as much profit from
companies as possible. Instead, look for a partner that will work with you
and provide a service that gives you value for money.

How Can Coralogix Bring You World-Class Observability?
Coralogix comes built with best-in-class observability tooling, including
logs, metrics, tracing and security data. It does all of this with a
revolutionary pricing model that regularly saves customers 40-70% off their
observability costs.

It does all of this while offering full integration with OpenTelemetry and
providing managed instances of Grafana, Kibana and Jaeger, so you can
interface exclusively with open source tooling, if you so choose. This means
there is no proprietary software sitting in your infrastructure, locking you in
and holding you back.

Feature
ELK	+	

Prometheus
Stack

Coralogix

Logs

Metrics

Tracing

Alerting

Open Source Integration

Machine learning driven alerting

Out of the box cost optimisation

Time sequence Flow Alerts

Fully managed Grafana,
Kibana and Jaeger

BUILD	VS.	BUY<PART 4>

https://opentelemetry.io/
https://coralogix.com/docs/flow-alert/

CONCLUSION
We have talked about how metrics are required to know that

Kubernetes clusters are functioning properly. Monitoring
Prometheus’ health is also important to ensure you are not

missing data. Traces are another data set that should be
collected from Kubernetes and can assist in troubleshooting

issues. Tools like Jaeger and Istio can be difficult to set up
and will require monitoring quite a lot of data. Traces could

be instantiated in logs instead and give the same effect.
We’ve shown how to install tools using Operators to ease the

operational burden of setup.

Even with Operators helping to instantiate tools, monitoring and
maintaining is still a burden on engineering teams. Developers

will need to keep a close watch on visualized data to ensure
they are seeing the full picture of their system’s health and are

collecting data in a cost-effective way for their system.

To avoid tool sprawl in Kubernetes, consider storing data in
Observability platforms that can perform functionality provided
by open source tools automatically. Such systems can be used
with open source observability data recording systems and in

some cases can replace tools.

https://coralogix.com/platform/

//36

Your data is telling yesterday’s story —
Find out what it can tell you today.

ABOUT CORALOGIX
We’re rebuilding the path to observability using a real-time streaming
analytics pipeline that provides monitoring, visualization, and alerting
capabilities without the burden of indexing.

By enabling users to define different data pipelines per use case, we
provide deep insights for less than half the cost.

In	short,	we	are	streaming	the	future	of	data.

Built for tomorrow’s data scale
2K+
Global
Customers

10K+
DevOps and
Engineering
Users

500K+
Applications
Monitored

3M+
Events Processed
Per Second

Create an Account Get a Demo

ABOUT	CORALOGIX

https://signup.coralogix.com/#/
https://land.coralogix.com/demo_request/?utm_source=ebook&utm_medium=ebook&utm_campaign=demo_request
https://signup.coralogix.com/#/
https://land.coralogix.com/demo_request/?utm_source=ebook&utm_medium=ebook&utm_campaign=demo_request

