
OPTIMIZED
LOGGING

<by> ARIEL ASSARAF
 CEO of Coralogix

Empowering the CI/CD
process with

LOGGING MATURITY

SUMMARY

EMPOWERING YOUR CI/CD PIPELINE USING LOGGING

ASPECTS OF LOGGING: “ADDING LIFE TO LOG DATA”

	 Unstructured vs. JSON

	 Other ways that json surmounts unstructured data formats

	 Log severity definition

	 Optimizing the CI/CD Pipeline	

 	 Benchmarking the Versions

	 Smart Business Metric	

FIVE LOGGING BEST PRACTICES

	

ACTIONABLE ALERTS	

WHY ARE ALERTS NEEDED?	

DEFINING AN ALERT

DYNAMIC ALERTS AND RATIO ALERTS

ALERT STRUCTURE

TO PUSH OR NOT TO PUSH AN ALERT	

EMPOWERING ALERTS USING VISUALIZATION TOOLS

HOW CORALOGIX OPTIMIZES LOGS AND CREATES ACTIONABLE ALERTS	

OPTIMIZING TO REDUCE ALERT CASCADES AND IMPROVE ACCURACY OF ALERTS

	 The Problem

	 How Coralogix Optimizes Against Sudden Anomaly Spikes

CONCLUSION

3

4

8

10

18

21

22

22

24

25

26

27

28

30

31

Table of content

Simple, file
based logging
Access to logs for application
provides insight into what the
application is doing in real time.

Log centralization
Avoid jumping in and out of
multiple servers when you have
more than one running instance
of your application.

Logs become
Structured Events
Consistency in logs makes it easier
to sift through what your logs are
doing, as well as query on specific
values.

Logging Graphs
and Metrics
Visualising the logs in dashboards,
graphs and counts means less time
spent digging through actual log
lines and provides a higher level
view of the system.

Logging tools built
into the applications
and servers
Stop inconsistency between
which apps are publishing logs
and which aren't. Ensure that
every component of the platform
behaves consistently.

Alerts attached
to logs
Alarms that are based on
logs provide a powerful early
warning system and shorten
the time to recovery.

Machine learning
analysis of logs
Fill in the gaps missed by your
alerting rules, learn new and
interesting patterns in your
system. Categorise and optimise
data for human consumption.

//4

<SUMMARY>

SUMMARY
Customers expect a great digital experience. This fact is pushing
software development to the limits of efficiency. It has driven
engineers to discover improved and sophisticated development
processes that have offered a way to streamline the lifecycle from
development to production.

Modern architectures need an optimized CI/CD pipeline to unlock
faster development timescales and improved release cycles.
The result is speed to market, improved commercial models, and
better customer experiences.

Your log data is the key
Many organizations have an invaluable repository of information,
containing everything they need to optimize their workflow and speed up
their delivery. Their log data. To take full advantage of this data requires a
change in behaviour - the introduction of logging best practices.

Best practices, coupled with an intelligent approach to logging, based
on machine learning (ML), provides the methodology to make a CI/CD
pipeline optimal. This unlocks:

	➜ A fluid and seamless, CI/CD pipeline, removing backlogs and

using benchmarks to keep delivery running smoothly;

	➜ Focused alerts, removing the avalanche effect that provides little

meaning. Engineers are enabled through knowledge; therefore,

	➜ Faster and more accurate feedback between end users and

Engineers.

//5

The result is a system that not only delivers efficiently into production but
also takes full advantage of an intelligent data-driven approach to better
software and services. This paper looks at the best practices and tools
needed to achieve this goal in CI/CD pipeline optimization.

Why logging is important
In the world of modern software development, data is the perfect
lubricant for optimized and effective delivery. But modern architectures
need actionable data that provides deep and insightful details throughout
the CI/ CD pipeline.

Best practices in logging and alerts lead to optimized software delivery.
Behind these best practices are a series of goals needed for an
organization to create amazing software in a competitive world.

 ensure an application honors
 its service level agreement (sla) 
An SLA is intrinsically linked, via log data, to service level
objectives (SLOs) and service-level indicators (SLIs). These
log data give an organization sight of the ongoing quality
levels of the service.

 ensure and prove an application
 complies with rules and regulations 

Never before have there been so many rules and
regulations on the use of data. Many data protection and
privacy laws require that audits and checks are carried out

<SUMMARY>

//6

regularly. Logs provide the necessary information on how
data is being processed within a system. As such, logging
compliments and augments regulatory compliance.

 create a ‘sketch’ of the operating
 characteristics of an application

Machine learning-enabled logging provides the deep
analysis needed to sketch the operating characteristics of
an application.

 assess an application’s
 health using application logs

Logging provides a snapshot of the health of an
application. It does this by comparing current operating
characteristics with a recent ‘healthy’ operating
characteristic. This provides the intelligence needed to
restore the health of a system.

 detect failures due to external
 attacks and internal errors

Malicious attacks against web endpoints are common.
And, these attacks usually have a distinct fingerprint that
logging detects. Using techniques such as pattern mining
and outlier analysis the signals of cyber-attacks can be
identified.

<SUMMARY>

//7

 proactively maintain and
 evolve an application
Continuous monitoring and logging of the operating
characteristics of an application and its environment
provides a pro-active picture of a system.

 assess the effectiveness
 of changes to an application

Logs can be used to measure the effectiveness of different
versions.

 detect second-order effects of
 features of and changes to an application

Application logs provide a wealth of information. Logs that
are used optimally, provide a rich seam of data that records
the evolving nature of an application.

<SUMMARY>

EMPOWERING
YOUR CI/CD
PIPELINE USING
LOGGING 4

<SECTION ONE>

01

<SECTION ONE>

//9

EMPOWERING YOUR CI/CD
PIPELINE USING LOGGING
Engineers have to use key foundation stones to build successful
outcomes. Monitoring and alerting provide one of these
foundational practices in the delivery of services and software.
Logging provides the basis for monitoring and alerting, and
logging empowers decisions. Efficient, actionable logging does not
come for free. One must follow best practices to achieve effective
development that gives your business a competitive edge.

We are all familiar with the risks of software development and
delivery. Delivery is a collaboration between multiple teams who

often only receive critical data at the last minute. Actionable, informed
decisions need to be made in moments. Optimized logs give engineering
teams the data to make these decisions with the best available
information to hand, resulting in fewer mistakes or opportunities missed.

Coralogix delivers actionable logging, by taking a new holistic approach
to logging that empowers Continuous Integration/ Continuous
Deployment (CI/CD) pipelines for modern architectures. By monitoring the
entire pipeline, Coralogix provides the intelligence needed by engineers to
ensure every stage of the pipeline is efficient and effective.

vs

<SECTION ONE>

//10

ASPECTS OF LOGGING:
“Adding life to log data”
Logging that helps you make key business decisions has to follow
best practices, but what are these best practices? Each section below
details a pivotal aspect of logging, ensuring your organization is set
up to optimize the logging that you depend on.

Unstructured vs. JSON
JavaScript Object Notation (JSON) is a widely used data exchange
language. Its ubiquity in software is unrivalled, and is supported by most
modern programming languages. It is human- readable and can be easily
generated by machines.

These features make JSON a better choice than unstructured formats in
supporting other data formats (including legacy formats) as they can be
transformed into JSON. This provides a good starting framework to build
universal logging services.

ASPECTS OF LOGGING

ARIEL ASSARAF
CEO
CORALOGIX

JSON
adds life
to log data.

<SECTION ONE>

//11

ASPECTS OF LOGGING

Other ways that json surmounts
unstructured data formats
JSON makes log files easier to visualize: JSON is now a standard format for
logging. One of the reasons for JSON becoming a chosen format is that the
universal data structure and other features of JSON support the creation
of a structured database for logs. This lends itself to visualizing even very
complex logging data that contains hundreds of thousands of events.

 json is easy to read
Logs need to be visualized using dashboards and other
interfaces. However, logs also need to be human-readable
just in case an operator needs to dive in and check
something.

Example JSON log

<SECTION ONE>

ASPECTS OF LOGGING

//12

 json is easier to filter and group

JSON transforms logs from raw log text to database
fields. Once transformed, the database can be searched,
and filters used to drill down into the logs. These data are
labeled, making it easy to combine a query or filter based
on two fields. You can also set a query based on ranges of
numeric parameters, for example. The result is a deep focus
that builds a very accurate picture of an event.

Overall, JSON Is a powerful format that provides a definitive view for each
user. JSON offers the flexibility and versatility needed for smart modern
logging.

2. IN
FO

3. W
ARNING

4. ERROR

5. CRITICAL

1. D
EBUG/VERBOSE

<SECTION ONE>

ASPECTS OF LOGGING

//13

1. DEBUG/VERBOSE
Describes a background event. These logs are not
typically needed except when as a method of context
and analysis during a crisis. These logs are useful in
tuning performance or debugging.

2. INFO
Logs that represent transaction data, e.g. a
transaction is completed successfully.

3. WARNING
These logs represent unplanned events, for example,
they may show that an illegal character for a
username was received but is being ignored by the
service. These are useful to locate possible flaws in
a system over time and allow changes to improve
system usability, etc.

4. ERROR
Represent failures in processes that may not
materially affect the entire service. These logs are
useful when aggregated and monitored to look for
trends to help improve service issues.

5. CRITICAL
These logs trigger an immediate alert to take action.
A fatal log implies a serious system failure that needs
immediate attention. Typically, in a day, 0.01% of logs
would be defined as high severity.

Log severity definition
Not all logs are created equal. This simple statement is the difference
between log fatigue and missing a critical event. Log definition is a musthave
for clarity, giving an instant understanding of how important a log is.

A classification system for logging is important as it provides a basis for
effective action based on a clear view of severity level. The examples of
log severity classes, shown below, are guidelines. Your company should
create a classification system that best suits your requirements:

THIS PRACTICE PROVIDES

FASTER
DELIVERY

1. 2. 3.CONTROL OVER A
BUILD AND SCALING
OF CI/CD PROCESS

BENCHMARKS
OF ANY VERSION

<SECTION ONE>

//14

Optimizing the CI/CD Pipeline
Many CI/CD tools facilitate smooth, fast deployments but a build still
needs to be optimized. Logs allow you to understand various elements
of the build, such as timing, load issues, and scaling problems.

This data often turns up in the middle of a crisis. If you need to get a fix out
fast, optimized logs give you the data to make informed decisions.

Benchmarking the Versions
Coralogix integrates with any CI/CD tool allowing you to tag every version
you upload to production. This tag is then represented in Coralogix
every time you deploy. Machine learning (ML) for data analysis is used to
benchmark this tag and maps it to the version.

ML lets you drill down to locate anomalies based on the benchmark.
By leveraging the power of ML, this process allows you to detect brand
new errors that have appeared in this new version, by comparing it with
previous versions.

ASPECTS OF LOGGING

Coralogix Version Benchmarks

<SECTION ONE>

//15

Tags are presented whenever a log search is performed and data queried
by tag. This facilitates easier search, better team collaboration, and
ultimately a more efficient and effective CI/CD process.

ASPECTS OF LOGGING

 LOGGREGATION

<SECTION ONE>

//16

Smart Business Metric
Optimally using logs and associating metadata with logs, allows you
to develop business logic metrics. These metrics offer business users
specific actionable data. Examples of this include number of errors per
purchase or number of active users and much more. Using this data, one
can also discover correlations between events, such as the relationship
between latency and drop off rate on the website.

When you’re searching for an error, you often need to filter
through thousands of logs to find the relevant information.
“Loggregation” is a process that analyzes logs automatically and
clusters them into templates. This gives an at-a-glance view of
anomalies and parameters that stand out. Users can visualize
these simply by clicking on a parameter of interest.

ASPECTS OF LOGGING

Coralogix Dashboard

<SECTION ONE>

//17

Both operations and business data can be visualized using optimized
logs. Coralogix offers a cost-effective “Logs to Metrics” component. This
provides visualization of core business operations. Users can create
a query, define aggregation, define labeling, and store for a year. This
component lets a business visualize long term trends, providing deep
insight into how business operations are working across time. This can
help improve software development and optimize production and delivery.

ASPECTS OF LOGGING

<SECTION ONE>

//18

FIVE LOGGING BEST PRACTICES
Severity definition provides a baseline to create a system based on
actionable logs, but logging has a wider remit. One that requires
best practices to optimize logging on an organizational basis. The
five best practices shown below, facilitate the optimization of a CI/
CD pipeline, ensuring that engineers and other stakeholders can use
logging data in a clear and effective way.

1. Log communication between components
Services are ecosystems of interconnected components. All events
in the system, including those that happen across the barrier
between components, should be logged. The logs should detail what
happens at each component, as well as the communication between
components. This gives us a view of the lifecycle of an event.

<SECTION ONE>

//19

FIVE LOGGING BEST PRACTICES

2. Log communications with external APIS
The API economy has facilitated the extended service ecosystem,
but API events often happen outside an organization. Optimized
logging records what is communicated across the API layer. For
example, if a service uses SendGrid to push out communication
emails to users, you need to know if critical alert emails are being
sent. If not, this would need to be addressed. Comprehensive
logging of external services provides the visibility necessary to
know the moment there is a service interruption.

3. Add valuable metadata to your log
In modern service ecosystems, many stakeholders need access to
logs This includes Business Intelligence teams, application engineers,
Support engineers, etc. Logs should include rich metadata, e.g.
location, service name, version, environment name, and so on.

4. Log accessibility
You may not be the only one reading the logs. As companies scale,
often access is needed by other stakeholders to change code, etc.

5. Combine textual and metric fields
Improve snapshot understanding of logs by having explanatory text
(e.g., “failed to do xxx”) combined with metadata fields to provide
more actionable insights. This offers a way to look at logs to see an
at-a-glance view of the issue before drilling into performance data.

An occurrence within a chosen visualized parameter can then be
expanded to see detail. Alerts can be associated with any chosen
parameter.

<SECTION ONE>

//20

Loggregation is where machine learning collaborates with human
insight and intelligence. Loggregation enables Coralogix to spot two
types of anomalies:

 flow anomaly
Coralogix discovers sequences of logs; logs that arrive
together, for example. Coralogix then notifies on missing
logs, understanding sequences across microservices, to
spot issues.

 error volume anomaly
Coralogix detects spikes, error spikes, bad API response
spikes, and so on. These are often missed by users as the
issue will quickly rectify back to normal. Coralogix will point
out suspected errors during this spike. This can be tied to
the benchmarks created during releases, and then used to
identify errors.

FIVE LOGGING BEST PRACTICES

Coralogix Error Anomalies

<SECTION TWO>

02

ACTIONABLE
ALERTS

<SECTION TWO>

//22

ACTIONABLE ALERTS
Logs are a leading indicator of issues and can be used for more than
just a post-mortem analysis. Whilst metrics for infrastructure only
present an outcome of problematic code/performance, logs are the
first encounter with code in use. As such, logs offer an easy way to
spot things before they are experienced at the user end. This is key
to CI/CD enhancement and service/software optimization.

“Why are alerts needed?
Logs need to be accurate and have context (unlike metrics). Being able to make
alerts specific and contextual will make that alert actionable. Classification
of alerts will ensure that your organization gets the most from alerts without
overwhelming engineering teams.

Defining Alerts
For alerts to be actionable they need definition. Below are three classes of alert:

 immediate alert
These alerts point to a critical event and are generated from
critical and fatal logs. They require immediate attention to
fix a serious issue.

 “more than” alert
Sent out if something happens more than a predefined
number of times.” “For example, an alert may trigger if
more than 10 users are failing to pay. If these types of
alerts are properly defined and sent to the right channel,
they can be acted upon and be highly effective.”

A LOGGING AND ALERT ECOSYSTEM

Elastic API

Grafana

Kibana

<SECTION TWO>

//23

ACTIONABLE ALERTS

 “less than” alert
These are sent when something is NOT happening, e.g.
a database clean-up did not run. Rather than waiting
until the critical issue surfaces, your organization can be
informed of the root cause as it happens and fix it before
it cascades.

If alerts are defined and channeled correctly, have context,
and can be interpreted easily, they will be actionable, add
context, and therefore offer greater value.”

Coralogix uses tools that
are familiar to the industry;
this includes Elastic API,
Kibana, and Grafana.
Logs can be used to generate
metrics, then enriched using
the Coralogix smart, machine
learning, and granular
classification system.

Occurrence within visualized parameter expanded

<SECTION TWO>

//24

ACTIONABLE ALERTS

Dynamic Alerts and Ratio Alerts
Coralogix goes further and adds granularity to alerts. This provides
greater control over the creation of alerts making them even more
actionable. Dynamic and Ratio alerts offer a deep level of management
and control to alerts, making alerts smarter:

 dynamic alert
Rather than a fixed point that will trigger an alert, a
dynamic alert can be resolved. This will create different
thresholds based on the time and date.

 ratio alert
Create an alert based on a ratio between queries. This
helps to ensure that alerts are only fired for consistent
issues, and not minor fluctuations in site traffic. When
alerts are generated, they carry more weight and meaning.

for example: A 1% ratio alert for “user failed to purchase /
user purchased successfully”. If ratio goes over 1% then
an alert is sent.

HOW IS CORALOGIX DIFFERENT TO GRAFANA

Grafana is mostly built for metrics data and
does not allow data slicing. There are no version
benchmarks, anomaly detection, ratio alerts,
dynamic threshold alerts and much more.
However, Coralogix is interoperable with Grafana.
The two are symbiotic. You can generate metrics
using Coralogix and present these in Grafana to
enrich and empower your metrics collation.

<SECTION TWO>

//25

Alert Structure
Classification of alerts is one criterion; another is the alert structure. This
ensures that alerts go to the right people. For example, a dedicated area
“can be set up in Slack for logging and metrics. Using channels, the alerts
can be directed to specific teams. This technique is key when avoiding
alert fatigue.

ACTIONABLE ALERTS

<SECTION TWO>

//26

To Push or Not to Push an Alert
The decision to push or not, an alert, is an important aspect of creating an
effective ‘alert culture’. Ask yourself these questions:

 text for flow

How would you feel if you received a specific type of alert
at 2 am? What would you do? If you would be angered by
getting this alert at that time, don’t push it.

If, instead, your reaction is to say, “I must look at this
tomorrow”, define the alert on your dashboard, but
DO NOT push it.

If the reaction is to stop what you are doing and respond –
push the alert.

This simple logic can go a long way to making alerts
actionable and workable. This method also helps to reduce
alert fatigue to keep the workforce happier.”

ACTIONABLE ALERTS

<SECTION TWO>

//27

Empowering Alerts Using Visualization Tools
When you use logs in the right way, i.e., configured using optimized
parameters such as metadata, contextual data, and defined correctly,
logs can be used by more than just the engineering department. Great
visualization takes logs to next level usability.

Visualization of logs empowers the use of logs as it creates an at-a-
glance view of areas of interest. Great visualization of logs needs to be:

	➜ Contextual

	➜ Easily read and understood by specific key stakeholders

	➜ Presented using great visuals and graphs that engage

	➜ Simple and easy to understand

The result is an intelligent logging and alert ecosystem that generates
actionable information and visuals. These enriched logs not only optimize
the CI/CD process but engage stakeholders across the organization.

ACTIONABLE ALERTS

<SECTION THREE>

03

HOW
CORALOGIX
OPTIMIZES LOGS
AND CREATES
ACTIONABLE
ALERTS

<SECTION THREE>

//29

HOW CORALOGIX
OPTIMIZES LOGS AND
CREATES ACTIONABLE ALERTS
Coralogix brings the big picture of logging into sharp view,
machine learning (ML) being used to find intrinsic value in logs.

Modern logging covers a vast array of devices, apps, and servers. The
result can be millions, even billions, of log events each day. Finding

meaning can be almost impossible. It can also be overwhelming for
development teams, affecting morale and causing log fatigue.

Machine learning cuts through the mass of log data, creating cohesive,
correlated categories. The logs can be grouped by user actions, log
origin, system trends, time periods, or any number of other shared
characteristics. New logs are then automatically deposited into existing
groups that they correspond to.

Used in combination with log and alert best practices, then augmented
with solutions such as Codefresh, Grafana, Heroku, and ELK, Coralogix
provides an organization with actionable insights. These insights offer
a company a powerful way to improve business processes, maintain a
great user experience, and ultimately retain a competitive edge.

<SECTION THREE>

//30

 HOW CORALOGIX OPTIMIZES LOGS AND CREATES ACTIONABLE ALERTS	

 use case
OPTIMIZING TO REDUCE ALERT CASCADES
AND IMPROVE ACCURACY OF ALERTS

The Problem
This real-life use case shows how Coralogix deals with a cascade of
alertsthat can overwhelm an organization. The organization in question had
set up comprehensive logging across several levels: platform, services, and
applications, with alerts enabled. The company saw a sudden 20-times spike
in traffic within a 60 second period. The result was a cascade of alerts that left
their DevOps team overwhelmed.

The team wanted to know if Coralogix could have prevented this problem, yet
still ensure that real crises were dealt with.

Notably, the organization generates approximately 1 billion logs per day.

<SECTION THREE>

//31

How Coralogix Optimizes
Against Sudden Anomaly Spikes
Coralogix dynamic or ratio-based alerts solve sudden spike alert overload by
using several mechanisms:

	➜ Whenever the traffic starts to spike, an organization gets a

‘volume anomaly alert’ allowing an organization to switch off the

alerts while dealing with the situation.

	➜ Log rules can define a “block rule” to block traffic you don’t want

to pay for. You can block on severity, application and much more.

	➜ Dynamic and Ratio alerts offer a more granular and smart way to

deal with sudden anomalies. Based on ratios rather than single

events, a sudden surge in traffic does not initiate an alert; only a

specified ratio would generate an alert.

	➜ An alternative is to use ‘Flow Anomalies’ that look at sequences

of logs Alerts are then only sent out if an expected sequence is

broken.

	➜ The level of granularity enabled by Coralogix smart logging

facilitates a higher degree of control and introspection.

 HOW CORALOGIX OPTIMIZES LOGS AND CREATES ACTIONABLE ALERTS	

DAVID VIRTSER

HEAD OF
INFRASTRUCTURE

Honestly, the #1
feature is their
amazing customer
support! They
reply online in less
than a minute, so
you can solve your
production issues
in real time”

CONCLUSION
Logging acts like the eyes of an organization, but the insight
offered by logging is only effective if it is optimized.

This is achievable by following logging best practices to build more
actionable logs. Putting these practices into effect requires the

right tools for the job. These tools need to facilitate the deep granularity
necessary to query logs, by teasing out the key data needed to empower
alerts and build visualizations that speak to stakeholders across the
business.

The ecosystem behind the tools is made smarter through machine
learning (ML). ML can interpret and analyze the vast amount of data
generated across the array of devices in modern technology architectures.
These analyses are the backbone of smart CI/CD pipelines that drive
smoother SDLC and create better software.

SCHEDULE A DEMOFREE TRIAL

https://bit.ly/3lasRPQ
https://signup.coralogix.com/

	Table of content
	Summary
	SECTION ONE
	Empowering your CI/CD Pipeline Using Logging
	Aspects of logging:
	Unstructured vs. json
	Other ways that json surmounts unstructured data formats
	Log severity definition
	Optimizing the CI/CD Pipeline
	Benchmarking the Versions
	Smart Business Metric
	Five Logging Best Practices

	SECTION TWO
	Actionable Alerts
	“Why are alerts needed?
	Defining Alerts
	Immediate Alert
	“More than” Alert
	“Less than” alert
	Dynamic Alerts and Ratio Alerts
	Dynamic Alert
	Ratio Alert
	Alert Structure
	To Push or Not to Push an Alert
	Empowering Alerts Using Visualization Tools

	SECTION THREE
	How Coralogix Optimizes Logs and Creates Actionable Alerts
	Optimizing to reduce alert cascades and improve accuracy of alerts
	The Problem
	How Coralogix Optimizes Against Sudden Anomaly Spikes

	Conclusion

	Button 26:
	Button 27:
	Button 29:
	Button 47:
	Button 46:
	Button 45:
	Button 44:
	Button 43:
	Button 42:
	Button 41:
	Button 40:
	Button 39:
	Button 38:
	Button 37:
	Button 36:
	Button 30:
	Button 31:
	Button 32:
	Button 33:
	Button 34:
	Button 28:
	Button 48:
	Button 49:
	logo 4:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 32:
	Page 33:

	__MENU 6:
	logo 3:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:

	__MENU 7:
	logo 2:
	Page 29:
	Page 30:
	Page 31:

