
1Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Coralogix
Cloud Security
By: Yuval Khalifa, Cyber Solutions Architect at Coralogix

WHITEPAPER

2Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Table of Contents
Introduction 4
STA vs. AWS methods 5

How It Works 7
STA structure 8

Optimize Costs 8

Security As Code 8

Attack Prevention vs. Detection 9

Flexibility & Customizability 10

Default Alerts 12

Dashboards 16

Traffic Mirroring Strategies 22
Mirror by Importance of Resource/Information 23

Mirror by Risk of Resource/Information 24

Mirror by Junction Points: 25

Mirror by Most Common Access Paths: 26

Mirror Some of Each: 27

Recommended Mirroring Baseline 28

Tighter Cloud Access 29

Supported Protocols 30

Handling Encrypted Traffic 31
Protocol 32

Detectable from Encrypted Traffic 32

Writing Effective Snort Rules 33

Data Enrichment 35

3Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix A - Coralogix Cloud Security Installation 38
System and environment requirements 38

Included in the installation 39

The installation process of Coralogix Cloud Security 44

Appendix B - Automate VPC Mirroring Configuration for Coralogix 46
Installation 48

Installation as a Kubernetes deployment 50

Traffic Mirroring Configuration 52

Appendix C - Modify Snort Rules 53

Appendix D - Best Practices to Writing Effective Snort Rules 57

Appendix E - Installing and Configuring a Wazuh Agent 60

Appendix F - Mirroring Strategies - Real Life Examples 62
Security groups and public IP configuration 63

GoldenBank 69

4Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Introduction

A successful cloud and container-native security posture is the goal that
organizations are striving towards but achieving it can seem lofty when
faced with mounting complexities and a lack of expert security resources.
Setting up a proactive monitoring solution is daunting in and of itself and
creating one without causing analyst fatigue and avoiding prohibitive data
costs can make it seem nearly impossible.

Security logs like Cloudtrail, VPC Flow logs, GuardDuty, and Auditbeat
without network packet data, are not enough to paint the full picture of
what’s being transmitted, and by whom, allowing attackers to circumvent
safeguards, as well as not having the information needed to perform deep
enough investigations. However, setting up, processing, and storing packet
data can be laborious and cost-prohibitive.

The Coralogix Cloud Security solution brings visibility and threat insights
to SOC and DevOps teams within minutes, instead of months. In order to
deliver reliable alerts with actionable context, Coralogix uniquely correlates
contextual log data and combines it with network packet data.

5Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Here’s a full comparison between the STA and all the other methods in AWS:

Feature Coralogix
STA

CloudWatch
Metrics

CloudTrail
Logs2

VPC Flow
Logs

GuardDuty VPC Traffic
Mirroring

VPC
Firewall

Provides a set of metrics that are
calculated based on the traffic

1

Provides auditing information about
AWS activities

Allows the user to create new metrics
and modify existing ones

6

Provides Layer 4 Context Data
(IPs, Port Numbers)

Provides Layer 7 Context Data (HTTP
URI’s and methods, SSL Certificates,
DNS Queries, FTP commands, files, etc)

4

Detects threats or malicious content 5

Detects potentially malicious behaviors

Allows the user to understand, modify,
disable and create new detection rules

3

Allows the user to access and store the
captured traffic

Enriches the data
(for example by adding domain creation
dates to domain names)

Allows integration with OSSEC/Wazuh
or similar agents for the purpose of
collection of instance specific data such
as processes running on each instance

Comes with predefined set of alerts,
including ML powered ones

Allows the user to customize the set of
alerts and to create new ones

Comes with predefined dashboards for
each type of protocol

Can be used to detect lateral
movements

7

Allows the user to customize the
predefined dashboards to his needs

6Coralogix Cloud Security Whitepaper © 2020 All rights reserved

(1) Will be added soon in upcoming versions

(2) Since CloudTrail logs are basically an auditing mechanism for AWS,
they provide a different type of context data that is also very valuable for
forensic investigations

(3) Allows the user to create new rules

(4) The VPC Firewall contains some protocol analyzers for analyzing the
packets passed through it but they are not as extensive and extensible
as the Zeek platform embedded in the STA. The Zeek platform contains
protocol analyzers for hundreds of different protocols

(5) Can detect threats at the perimeter only and only based on its suricata’s
signatures list

(6) The offered metrics are very basic like dropped/passed packets. The user
can add one dimension to the metrics called “CustomAction”. See more
here: https://docs.aws.amazon.com/network-firewall/latest/developerguide/
monitoring-cloudwatch.html

(7) The VPC firewall can only be installed at the perimeter level, as an inline
device, which prevents it from being exposed to the inter-vpc traffic

7Coralogix Cloud Security Whitepaper © 2020 All rights reserved

How It Works

The Coralogix 3-click Cloud Security deployment enables organizations to
quickly start improving their security posture, detect threats, and analyze
digital forensics without the complexity, long implementation cycles, and
high costs of other solutions.

You can mirror your server traffic to Coralogix by using AWS VPC traffic
mirroring and Coralogix will automatically capture, analyze, and optionally
store the traffic for you while creating meaningful logs, alerts, and
dashboards in your Coralogix account.

Coralogix sets up traffic mirroring quickly with a VPC Traffic Mirroring
Configuration Automation handler which automatically updates your VPC
traffic mirroring configuration based on instance tags and tag values in
your AWS account.

The solution provides access to all of your data being transferred between
your servers and other cloud-based infrastructure, as well as automated
analysis using ML-powered algorithms that alert you to potential threats
with the complete ability to tune them, disable them if needed, and easily
create any type of new alerts.

In addition, Coralogix automatically enriches the data passing through it
such as domain names, certificate names, and much more by using data
from several other data sources, allowing you to create more meaningful
alerts and reduce false-positives to the minimum while not increasing
false-negatives.

https://www.coralogix.com/log-analytics-blog/how-to-automate-vpc-mirroring-for-coralogix-sta/
https://www.coralogix.com/log-analytics-blog/how-to-automate-vpc-mirroring-for-coralogix-sta/
https://www.coralogix.com/tutorials/the-default-set-of-alerts-in-the-coralogix-security-traffic-analyzer-sta/
https://www.coralogix.com/tutorials/how-to-modify-an-sta-snort-rule/

8Coralogix Cloud Security Whitepaper © 2020 All rights reserved

The following diagram describes the structure of the STA:

Optimize Costs

With the Coralogix Optimizer, you can reduce up to 70% of storage costs
without sacrificing full security coverage and real-time monitoring. This
new model enables you to get all of the benefits of an ML-powered logging
solution at only a third of the cost and with more real-time analysis and
alerting capabilities than before.

Security As Code

Since Coralogix Cloud Security doesn’t use any collectors or configurations,
it can be deployed as part of your AWS VPC template to assure any new
environment set up anywhere will be labeled, observed, and secured.

https://coralogix.com/log-analytics-blog/how-to-optimize-your-logging-costs/

9Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Attack Prevention vs. Detection

A question we’re often asked regarding Coralogix Cloud Security is: Why use
Coralogix Cloud Security to detect attacks that I can prevent by using better
firewalls, WAFs, and the like?

The answer is simple: Suppose you would like to install a new burglar
alarm at home and you come home one day from work and find out that
someone stole several items from your home, without a good set of cameras
that document everything going on, how would you better prepare for the
next burglar? After all, you can only guess how they circumvented your
sophisticated burglar alarm and you will never know for sure which items
were stolen.

This is exactly what Coralogix Cloud Security is for, it is not intended as a
replacement of your firewalls, security groups, WAFs, and other security
components you might have but to complement them by providing a
complete high-resolution picture of what actually went on in your network
so that even if you will get attacked at some point you’ll be able to know
exactly what happened and how did it happen and plan better to prevent
similar scenarios from happening again.

With that being said, it is worth noting that although Coralogix focuses
on detection rather than prevention, it is still possible to achieve
both detection and better prevention by integrating Coralogix with
an orchestration platform such as Cortex XSOAR. This platform has a
production-ready integration with Coralogix that allows you to pull
incidents from Coralogix and create automated response playbooks that
will use other systems in your organization to achieve better attack
prevention as well.

10Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Flexibility & Customizability

Good security is always a tailor-made thing. There are few rules that
are right for every organization that seeks a better security posture
but the majority of good security rules are organization specific. Every
organization has things that make it unique. Many of these can be quite
useful when you try to catch malicious activity in your organization –
both external and internal. By using this deep internal knowledge to your
advantage, you’ll essentially convert the problem from a technological one
to a pure old-school intelligence problem, forcing attackers to have a much
more intimate understanding of your organization in order to be able to
hide their tracks effectively. These things can be technological in nature
or based on your organization’s particular working habits and internal
guidelines.

The Coralogix Cloud Security solution, unlike many other solutions on the
market today, comes with a predefined set of alerts, dashboards and Snort
rules but also with the ability to change all of them and tailor them to suit
your organization’s needs.

One of the most painful issues that usually deters people from using an
IDS solution is that they are notorious for their high false-positive rate, but
Coralogix makes it unbelievably easy to solve these kinds of issues.

A default alert becomes too noisy for your organization? Just go into the
alerts screen in Coralogix and set a different threshold for that alert. If you
are not sure what the correct threshold should be – just set the alert to use
ML algorithms to detect and alert you on anomalies in this alert ratio and
the system will learn automatically the normal behavior of this alert and
alert only when the current behavior deviates from it.

11Coralogix Cloud Security Whitepaper © 2020 All rights reserved

You can learn more about alert types in Coralogix in the following links:

User Defined Alerts
Dynamic Alerts
Ratio Alerts

Even parsing data from your packets for easier filtering and alerting is a
matter of seconds. You can create simple rules for extracting important
pieces of data from the STA logs into fields, structuring the logs in a
different way and much more - you can read more about it here.

A snort rule is too noisy for your organization? Also not a problem – Just
update a couple of files on an S3 bucket and the old rule is now disabled and
is replaced with your own rule.

And dashboard editing is just a matter of simple 2-3 clicks and you’re done.

https://coralogix.com/tutorials/coralogix-user-defined-alerts/
https://coralogix.com/tutorials/dynamic-alerts/
https://coralogix.com/tutorials/ratio-alerts/
https://coralogix.com/tutorials/rules-cheat-sheet/

12Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Default Alerts

Once you install Coralogix Cloud Security, we can update your account with
a set of default alerts built specifically for use with the Coralogix. Here’s a
quick overview of these alerts and their purpose:

STA – NIDS alert detected

This alert will fire every time a security-related issue is detected by
Coralogix’s Snort engine. You can tune this alert by either modifying the
alert’s Lucene query or by modifying the disablesid.conf file (to disable the
current signature) and then to create a new one in the local.rules file on
Coralogix’s config S3 bucket. To learn more about how to do that see here.

STA – Unusual reconnaissance activity detected

This alert will fire when Coralogix detects an abnormal rate of Coralogix
events indicating that the organization is being scanned from the outside.

STA – Unusual connections rate from blacklisted IPs

This alert will fire when Coralogix detects an abnormal rate of Coralogix
events indicating a connection from a potentially malicious IP address.

STA – Request for public IP echo services detected

Many malicious tools will attempt to discover their public IP address. Some
will attempt to do that to detect where they are located on the globe, others
will use this information for registration with their Command & Control
server. This alert will fire when Coralogix, based on Coralogix logs, detects
a connection to several sites often used for this purpose by malicious tools.

13Coralogix Cloud Security Whitepaper © 2020 All rights reserved

STA – Trojan activity detected

This alert will fire when the Snort engine of Coralogix detects a Trojan
attempt.

STA is not seeing any traffic – MIRRORING is DOWN

This alert will fire when Coralogix detects, based on the logs from
Coralogix that it is alive but is not seeing any traffic. This can indicate that
there’s a problem with your VPC Traffic Mirroring configuration. In the
last version of Coralogix, we also published a tool for automating the VPC
Traffic Mirroring configuration which can help to fix the problem. You can
find more about it here.

STA – Usage of rarely used DNS record types detected

Some DNS record types, like A, AAA, and MX are very commonly used while
others like TXT and ISDN are almost never used. Some of those can also be
used (or even preferred) by an adversary for a DNS tunneling attack. This
alert will fire when an attempt is made to use such a record type. If your
organization uses such records for legitimate purposes you can simply
remove it from the alert query and possibly create a new alert that will fire
only if the rate of DNS requests for that specific record type is abnormal.

STA – Unusual high volume of DNS requests returned NXDOMAIN

This alert would fire when Coralogix detects an abnormal rate of
NXDOMAIN responses by DNS servers based on Coralogix logs. Many types
of attacks nowadays are some sort of a connection with a Command &
Control server. The common way for malware to connect to its Command
& Control server today is by using a machine-generated domain name –
a.k.a Domain Generation Algorithm (DGA). The way it usually works is that
the attacker programs the malware to attempt to generate a domain name
based on the current date every day and attempt to reach it and if it fails –

14Coralogix Cloud Security Whitepaper © 2020 All rights reserved

to use the domain that was used until now. That way, if someone would
block the access to the Command & Control domain the attacker would
simply have to register the domain name that the malware will look
for tomorrow and the connection will automatically be restored. Such
a strategy would lead to an abnormal rate of DNS requests resulting in
NXDOMAIN responses (since the malware will continuously look for
domains that are not registered).

STA – DNS activity on TCP detected

DNS most commonly runs on the UDP protocol on port 53. DNS uses TCP in
two main scenarios: Domain transfer and for sending large TXT requests.
The first one should not be used by unauthorized personnel and definitely
not very often and the latter should almost never happen. This alert will
fire when such activity (DNS over TCP is detected)

STA – Access to a baby domain was detected

Employees and even more so, servers that are accessing domains that are
“young” in the sense that they were registered only very recently are often
good indications of malicious activity. This alert fires when access to a
domain that was created less than three months has been detected.

STA – BRO Notice Detected

This alert fires when the Bro (a.k.a Zeek) engine in Coralogix has detected
anomalous and potentially malicious behavior.

STA – Unusual TOR nodes connectivity

Tor browsers and the Tor network in general are notorious for their
malicious usage in hiding adversary actions. This alert would fire when
Coralogix detects an anomaly in the rate of connections from Tor nodes (as
detected by the Snort engine in Coralogix)

15Coralogix Cloud Security Whitepaper © 2020 All rights reserved

STA is OFFLINE

This alert would fire when no logs are coming from the Coralogix STA

STA – Unrecognized software

The Bro (a.k.a Zeek) engine of Coralogix STA can detect software running
on monitored (and unmonitored) servers by deducing them based on the
traffic observed by Coralogix. These findings appear on the Software
dashboard of Coralogix. This alert is a stub that you can use to whitelist
software that you do use (based on what you saw on the software
dashboard) and alert on everything new. This is the software dashboard of
Coralogix:

STA – Unrecognized software type

See “Coralogix – Unrecognized software” above.

16Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Dashboards

After installing Coralogix Cloud Security for the first time the following
dashboards will be automatically added to your account:

Baby Domains

Displays young domains that were created in the last three months that
were accessed by the monitored servers.

Bro - Connections

Displays information about connections observed by Coralogix. Includes
information such as protocols (e.g. TCP, UDP, ICMP), ports, connection
states (e.g. SYN, ACK, PSH, FIN), geographic locations.

Bro - DNS

Displays information
about DNS queries
and answers
detected in the
monitored traffic.
Includes information
such as queries, DNS
servers, response
codes, geographic

locations, protocols, domain names, domains creation date.

Bro - FTP

Displays information about FTP connections detected in the monitored
traffic. Includes information such as FTP commands, file paths.

17Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Bro - Files

Displays information about files that were detected in the network traffic in
any protocol. Includes information such as file hashes, MIME types, source
IPs.

Bro - HTTP

Displays information about HTTP connections, includes information such
as hostnames, web methods, URIs, amount of bytes transferred, HTTP
referrers, user-agents, MIME types.

Bro - DHCP

Displays information about DHCP connections observed in the traffic.

Bro - IRC

Displays information about IRC connections observed in the traffic.

Bro - MySQL

Displays information about MySQL connections found in the traffic.
Includes information such as database names.

Bro - RDP

Displays information about Remote Desktop Protocol (RDP) connections
found in the monitored traffic.

Bro - SIP

Displays information about SIP connections (VOIP) found in the monitored
traffic.

Bro - SMB

Displays information about SMB connections found in the monitored
traffic.

18Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Bro - SMTP

Displays information about Simple Mail Transmission Protocol (SMTP)
connections found in the monitored traffic.

Bro - SNMP

Displays information about SNMP connections found in the monitored
traffic.

Bro - SSH

Displays information about SSH connections found in the monitored traffic.
This data is partially based on packet size analysis.

Bro - SSL

Displays information
about SSL/TLS
certificates detected
in the traffic.
Includes information
such as certificates
details (issuer, CN,
validation status)

Bro - Software

Displays information
about software
types of servers and
clients as detected in
the observed traffic
by specific protocol
analyzers. Includes

19Coralogix Cloud Security Whitepaper © 2020 All rights reserved

information such as user agents, SSH clients and servers, database servers.

Bro - Tunnels

Displays information about tunnelled connections as detected in the
monitored traffic.

Bro - X.509

Displays information
about X.509
certificates that
have traversed the
network.

Connections -
Destination - Sum
of Total Bytes

Displays a world map with colored dots that their size represents the sum of
total bytes transferred to that geographic region.

Connections - Destination - Top Connection Duration

Displays a world map with colored dots that their size represents the top
connection duration to that geographic region.

Connections - Source - Originator Bytes

Displays a world map with colored dots that their size represents the sum of
originator bytes transferred from that geographic region.

Connections - Source - Responder Bytes

Displays a world map with colored dots that their size represents the sum of
responder bytes transferred from that geographic region.

Connections - Source - Sum of Total Bytes

20Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Displays a world map with colored dots that their size represents the sum of
total bytes transferred from that geographic region.

Connections - Source - Top Connection Duration

Displays a world map with colored dots that their size represents the top
connection duration from that geographic region.

Connections - Top Source IPs

Displays a pie chart of the top source IP addresses with some details.

Connections - Total Bytes

Displays total number of bytes transferred by some aggregations such as:
by source IP, by destination IP, by Connection, by destination port.

OSSEC - Processes

If Wazuh integration
is enabled and
configured, displays
the processes
running on all nodes
that run the Wazuh
agent and report to
Coralogix.

OSSEC Alerts

If Wazuh integration
is enabled and
configured, displays
Wazuh alerts from
Wazuhs running on
all nodes that run

21Coralogix Cloud Security Whitepaper © 2020 All rights reserved

the Wazuh agent and report to Coralogix.

Frequency Analysis

Displays statistics regarding the NLP based score on all domains observed
in the traffic.

Bro - Notices

Displays security issues that were detected by Zeek.

Bro - Weird

Displays possible
security issues
that were detected
by Zeek. Issues
presented here
not necessarily
mean that there’s a
security issue with
your network but it

is an indication that something might need to be investigated.

NIDS

Displays security issues that were detected by Snort.

22Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Traffic Mirroring Strategies

In order to be able to detect everything, you have to capture everything and
in order to be able to investigate security issues thoroughly, you need to
capture every network packet.

More often than not, the data once labeled irrelevant and thrown away is
found to be the missing piece in the puzzle when slicing and dicing the logs
in an attempt to find a malicious attacker or the source of an information
leak.

However, as ideal as this might be, in reality, capturing every packet
from every workstation and every server in every branch office is usually
impractical and too expensive, especially for larger organizations. Just like
in any other field of security, there is no real right or wrong here, it’s more a
matter of whether or not it is worth the trade-off in particular cases.

There are several strategies that can be taken to minimize the overall cost
of the AWS traffic monitoring solution and still get acceptable results. Here
are some of the most commonly used strategies:

23Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Mirror by Importance of Resource/Information

Guidelines: After mapping out the most critical assets for the organization
from a business perspective, configure the mirroring to mirror only
traffic to and from the most critical servers and services to be mirrored
and analyzed. For example, a bank will probably include all SWIFT related
servers, for a software company it will probably include all traffic from and
to their code repository, release location, etc.

Rationale: The rationale behind this strategy is that mirroring the most
critical infrastructures will still provide the ability to detect and investigate
security issues that can harm the organization the most and will save
money by not mirroring the entire infrastructure.

Pros: By following this strategy, you will improve the visibility around the
organization’s critical assets and should be able to detect issues related
to your organization’s “crown jewels” (if alerts are properly set) and to
investigate such issues.

Cons: Since this strategy won’t mirror the traffic from non-crown jewels
environments, you will probably fail to pinpoint the exact (or even
approximate) path the attacker took in order to attack the organization’s
“crown jewels”.

Tips: If your organization uses a jump-box to connect to the “crown
jewels” servers and environments, either configure the logs of that jump-
box server to be as verbose as possible and store them on Coralogix with a
long retention period or mirror the traffic to the jump-box server.

24Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Mirror by Risk of Resource/Information

Guidelines: After mapping out all the paths and services through which the
most critical data of the organization is being transferred or manipulated,
configure the mirroring to mirror only traffic to and from those services
and routes. The main difference between this strategy and the one
mentioned above is that it is focused on sensitive data rather than critical
services as defined by the organization.

Rationale: The rationale behind this strategy is that mirroring all the
servers and services that may handle critical information will still provide
the ability to detect and investigate security issues that can harm the
organization the most and will save money by not mirroring the entire
infrastructure.

Pros: You will improve the visibility around the critical data across services
and environments and you should be able to detect, by configuring the
relevant alerts, attempts to modify or otherwise interfere with handling
and transferring the organization’s sensitive data

Cons: Since this strategy won’t mirror traffic from endpoints connecting to
the services and paths used for transmission and manipulation of sensitive
data, it might be difficult or even impossible to detect the identity of the
attacker and the exact or even approximate path taken by the attacker.

Tips: Collecting logs from firewalls and WAFs that control the connections
from and to the Internet and sending the logs to Coralogix can help a great
deal in creating valuable alerts and by correlating them with the logs from
Coralogix can help identify the attacker (to some extent) and his/her chosen
MO (Modus Operandi).

25Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Mirror by Junction Points:

Guidelines: Mirror the data that passes through the critical “junction
points” such as WAFs, NLBs or services that most of the communication to
the organization and its services goes through.

Rationale: The idea behind this strategy is that in many organizations
there are several “junction points” such as WAFs, NLBs or services that
most of the communication to the organization and its services goes
through. Mirroring this traffic can cover large areas of the organization’s
infrastructure by mirroring just a handful of ENIs.

Pros: You will save money on mirroring sessions and avoid mirroring some
of the data while still keeping a lot of the relevant information.

Cons: Since some of the data (e.g. lateral connections between servers and
services in the infrastructure) doesn’t necessarily traverse the mirrored
junction points, it won’t be mirrored which will make it harder and
sometimes even impossible to get enough information on the attack or even
to be able to accurately detect it.

Tips: Currently, AWS cannot mirror an NLB directly but it is possible
and easy to mirror the server(s) that are configured as target(s) for that
NLB. Also, you can increase the logs’ verbosity on the non-monitored
environments and services and forward them to Coralogix to compensate
for the loss in traffic information.

26Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Mirror by Most Common Access Paths:

Guidelines: Mirror traffic from every server based on the expected and
allowed set of network protocols that are most likely to be used to access it.

Rationale: The idea behind this strategy is that servers that expose a
certain service are more likely to be attacked by that same service. For
example, an HTTP/S server is more likely to be attacked via HTTP/S than
via other ports (at least at the beginning of the attack). Therefore, it makes
some sense to mirror the traffic from each server based on the expected
traffic to it.

Pros: You will be able to save money by mirroring just part of the traffic
that arrived or was sent from the organization’s servers. You will be able
to detect, by configuring the relevant alerts, some of the indications of an
attack on your servers.

Cons: Since you mirror only the expected traffic ports, you won’t see
unexpected traffic that is being sent or received to/from the server which
can be of great value for a forensic investigation.

Tips: Depending on your exact infrastructure and the systems and services
in use, it might be possible to cover some of the missing information by
increasing the services’ log verbosity and forwarding them to Coralogix.

27Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Mirror Some of Each:

Guidelines: Randomly select a few instances of each role, region or subnet
and mirror their traffic to Coralogix.

Rationale: The idea behind this strategy is that it would be reasonable to
assume that the attacker would not know which instances are mirrored and
which are not, and also, many tools that are used by hackers are generic
and will try to propagate through the network without checking if the
instance is mirrored or not, therefore, if the attacker tries to move laterally
in the network (manually or automatically), or to scan for vulnerable
servers and services, it is very likely that the attacker will hit at least one of
the mirrored instances (depending on the percentage of instances you have
selected in each network region) and if alerts were properly configured, it
will raise an alert.

Pros: A high likelihood of detecting security issues throughout your
infrastructure, especially the more generic types of malware and malicious
activities.

Cons: Since this strategy will only increase the chances of detecting an
issue, it is still possible that you will “run out of luck” and the attacker
will penetrate the machines that were not mirrored. Also, when it comes
to investigations it might be very difficult or even impossible to create a
complete “story” based on the partial data that will be gathered.

Tips: Since this strategy is based on a random selection of instances,
increasing the operating system and auditing logs as well as other services
logs and forwarding them to Coralogix for monitoring and analysis can
sometimes help in completing the picture in such cases.

28Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Recommended Mirroring Baseline

In addition to the specific strategy you’ll develop, we also recommend you
mirror the following traffic. These will probably cost you near nothing
but can be of great value when you’ll need to investigate an issue or detect
security issues (manually and automatically):

All DNS traffic

It is usually the tiniest traffic in terms of bytes/sec and packets/sec but can
compensate for most black spots that will result in such trade-offs.

Mirror traffic that should never happen

Suppose you have a publicly accessible HTTP server that is populated
with new content only by scp from another server. In this case, mirroring
should be done on the FTP access to the server, since that FTP is one of the
most common methods to push new content to HTTP servers, mirroring
FTP traffic to this server and defining an alert on such an issue will reveal
attempts to replace the HTTP contents even before they have succeeded.
This is just one example, there are many possible examples (ssh or nfs
to Windows servers, RDP, SMB, NetBIOS and LDAP connections to Linux
servers) you probably can come up with more based on your particular
environment. The idea here is that since an attacker doesn’t have any
knowledge of the organization’s infrastructure, the attacker will have to
first scan hosts to see which operating systems are running and which
services they are hosting, for example by trying to connect via SMB (a
protocol mostly used by Windows computers) and if there is a response, the
attacker would assume that it is Windows. Of course, the same applies to
Linux.

29Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Tighter Cloud Access

In cloud infrastructures, instances and even the mirroring configuration
are accessible via the Internet and therefore theoretically allows an attacker
to find out whether an instance is mirrored and to act accordingly. Because
of this, it is even more important to make sure that access to the cloud
management console is properly secured and monitored.

30Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Supported Protocols

Coralogix Cloud Security contains several tools that will analyze the traffic
that is observed by Coralogix and will generate three types of data streams:

Alerts

Based on the observed traffic and a set of known malicious signatures and
known malicious behaviors, the system will generate logs that indicate an
alert.

Context Data

In addition to these alerts, the system will provide a very detailed context
information based on its protocol analyzers and the data being captured.
This type of data is extremely valuable for forensic investigations as well as
for detecting anomalous network and user behaviors.

Raw Packet Data

Coralogix supports uploading raw packet data to an S3 bucket for further
analysis. Since these are the raw pcap files they contain any protocol data.

These tools support a plethora of protocols including transmission
protocols such as TCP and UDP as well as many application protocols such
as FTP, HTTP, IRC, POP3, SMTP, SNMP, NTP, DNS, SSH, MYSQL, SIP, IMAP,
RDP, SMB and even to the extent of SCADA protocols such as MODBUS and
DNP3.

31Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Handling Encrypted Traffic

More websites are encrypting their traffic by using the TLS protocol,
servers are no longer managed in clear text telnet sessions but rather in
secure SSH sessions, even emails are now being transmitted in SMTPS
sessions. This trend is obviously good for keeping our private information
private but it also allows attackers to hide their tracks and makes it harder
for blue teams to detect threats in the traffic.

You can use many different services for handling SSL termination and
then send decrypted traffic to Coralogix for analysis. But even if you don’t,
Coralogix can detect lots of things about encrypted traffic without having
to decrypt it first.

This is just an example of course, the same is true for other encrypted
protocols like SMTPS, FTPS and many more. This is even more true since
many encryption schemes today are using TLS under the hood.

The list above only relates to the context data but there is a huge list of
Snort and Zeek rules that can detect certain types of malicious activity even
in encrypted communications based on things like packet size analysis.

Also, since most of the encrypted communications will first query the
DNS for the correct IP address, forwarding the DNS traffic to Coralogix can
greatly improve its effectiveness by creating dashboards and alerts based
on the DNS traffic as well.

The following is a partial list of what Coralogix can detect in encrypted
traffic.

32Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Protocol Detectable from Encrypted Traffic

SSL
(HTTPS,
FTPS,
SMTPS...)

Trend & Rate – The amount of connections and bytes that were transferred
over time. This can be used to detect anomalies

TLS/SSL Version – Access to public services that were expected to be secure
and are detected as using an old version of TLS can indicate that they were
compromised or that an attacker is trying to cause the server and client to
use a weaker type of encryption to allow him/her to eavesdrop the traffic. An
attack known as SSL Stripping.

Source & Destination Countries – Based on IP to GeoLocation enrichment we
can detect the geographic location of the source and destination servers

Certificate Details – Since the certificate that is being used by the server is
not encrypted, the STA will analyze it and provide details such as Common
Name, Issuer Common Name, Issuer Country, Server name, TLS/SSL version,
certificate validation status, Certificate chain length, Certificate cipher details

SSH Trend & Rate – The amount of connections and bytes that were transferred
over time. This can be used to detect anomalies

Server and client software types – In the case of outbound SSH connections
from your organization to the internet, an attempt that should be considered
suspicious, the client software can provide an indication of the malware and
even of the attacking group. In the case of connections to your server, the
client software type can indicate whether it’s a legitimate client or not.

Source & Destination Countries – Based on IP to GeoLocation enrichment we
can detect the geographic location of the source and destination servers

Cipher Algorithm – The cipher algorithm used in this SSH session. This can
indicate that one of your servers is using an unauthorized or non standard
cipher and by that becoming vulnerable

Number of observed authentication attempts – The number of authentication
attempts that were observed by the server. Not all of them necessarily indicate
failures but if you see a large number here that probably means that someone
is trying to guess your SSH password

33Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Writing Effective Snort Rules

Snort is an open-source network intrusion detection system (NIDS) that
provides real-time packet analysis and is part of the Coralogix Cloud
Security solution.

Anatomy of Snort Rules

Before diving into the different strategies for writing your best snort rules,
let’s start off by dissecting an example Snort Rule:

alert tcp $EXTERNAL_NET any -> 10.200.0.0/24 80 (msg:”WEB-IIS CodeRed v2

root.exe access”; flow:to_server,established; uricontent:”/root.exe”; nocase;

classtype:web application-attack; reference:url,www.cert.org/advisories/CA-

2001 19.html; sid:1255; rev:7;)

alert: tells Snort to report this behavior as an alert (it’s mandatory in rules created for
Coralogix).

tcp: means that this rule will only apply to traffic in TCP.

$EXTERNAL_NET: this is a variable defined in Snort. By default, the variable HOME_
NET is defined as any IP within these ranges: 192.168.0.0/16,10.0.0.0/8,172.16.0.0/1
2 and EXTERNAL_NET is defined as any IP outside of these ranges. You can specify
IP addresses either by specifying a single IP like 10.200.0.0, an IP CIDR range like
192.168.0.0/16 or a list of IPs like [192.168.0.0/16,10.0.0.0/8]. Just note that spaces within the
list are not allowed.

any: in this context, it means “from any source port”, then there’s an arrow ‘->’
which means “a connection to” (there isn’t a ‘<-’ operator, but you can simply flip
the arguments around the operator. You can use the ‘<>’ operator to indicate that the
connection direction is irrelevant for this rule), then an IP range which indicates the
destination IP address and then the port. You can indicate a port range by using colon
like 0:1024 which means 0-1024. In the round parenthesis, there are some directives for
setting the alert message, metadata about the rule, as well as additional checks.

34Coralogix Cloud Security Whitepaper © 2020 All rights reserved

msg: is a directive that simply sets the message that will be sent to Coralogix in case a
matching traffic will be detected.

flow: is a directive that indicates whether the content we’re about to define as our
signature needs to appear in the communication to the server (“to_server”) or to the
client (“to_client”). This can be very useful if, for example, we’d like to detect the server
response that indicates that it has been breached.

established: is a directive that will cause Snort to limit its search for packets matching
this signature to packets that are part of established connections only. This is useful to
minimize the load on Snort.

uricontent: is a directive that instructs Snort to look for a certain text in the normalized
HTTP URI content. In this example, we’re looking for a url that is exactly the text “/root.
exe”.

nocase: is a directive that indicates that we’d like Snort to conduct a case insensitive
search.

classtype: is a directive that is a metadata attribute indicating which type of activity this
rule detects.

reference: is a directive that is a metadata attribute that links to another system for more
information. In our example, the value url,<https://....> links to a URL on the Internet.

sid: is a directive that is a metadata attribute that indicates the signature ID. If you are
creating your own signature (even if you’re just replacing a built-in rule), use a value
above 9,000,000 to prevent a collision with another pre-existing rule.

rev: is a directive that indicates the version of the rule.

There’s a lot more to learn about Snort rules which supports RegEx parsing,
protocol-specific parsing (just like uricontent for HTTP), looking for binary
(non-textual) data by using bytes hex values, and much much more. If you’d
like to know more you can start here.

35Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Data Enrichment

The raw packet data that is passed through Coralogix is enriched with
the following fields, in addition to protocol specific fields, to facilitate the
creation of effective and powerful alerting rules that will accurately detect
security related threats:

Connection state (security.connection_state, security.connection_
state_description)

Allows you to filter, in alerts as well as in searches, only for successful or
unsuccessful connections or connections at a certain stage. For example,
by using this field it is possible to detect SYN flooding or SYN based
reconnaissance.

Whether the connection is established (security.established)

Allows you to filter, in alerts as well as in searches, only for connections
that have succeeded or failed. For example, you might want to measure, in
a dashboard, the ratio between established and not established connections
to your front end servers to detect connectivity issues to them that may
result from or be an indication of DDoS attack that is in progress.

Connection duration (security.duration)

Indicates the connection’s duration. Each protocol has a typical connection
length, for example HTTP connections are relatively short since it’s a
connectionless protocol while SSH connections can be much longer.
By identifying the correct threshold for your organization for common
protocols you can detect attacks such as slow post attacks which are
essentially non-volumetric denial of service attacks.

36Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Private/Public Source/Destination IP indications (security.local_orig,
security.local_respond)

Makes it easier to create rules that apply only to outbound or inbound
connections.

Bytes transferred from each connected party (security.original_ip_
bytes, security.respond_ip_bytes)

Makes it easier to detect large data leakage issues, unusual high number of
stale connections and many other important issues.

Source & Destination geographic location details (security.*_geo.
city_name, security.*_geo.continent_code, security.*_geo.country_
code2, security.*_geo.country_code3, security.*_geo.country_name,
security.*_geo.location)

Allows you to create whitelist or blacklist based alerts that will fire when a
connection from/to an unexpected geographic location is detected.

NLP based score for domain names (security.frequency_scores,
security.highest_registered_domain_frequency_score)

Many types of attacks nowadays rely on a technique known as Domain
Generation Algorithm, Coralogix automatically calculates a score for each
domain, domain part certificate names and much more. This score is based
on the frequency of letter combinations in the text and the expected letter
combinations in English. By using this score, in alert rules it would be
possible to detect DGA usage.

Domain creation date (security.creation_date)

Coralogix will enrich domain names with the date at which they were
created. This is since that younger domains are often involved in malicious
activity such as DGAs and phishing attempts. By using this field you can
easily create an alert that alerts you if a computer is trying to access young
domains.

37Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Domain parts (security.highest_registered_domain, security.parent_
domain, security.subdomain, security.tld.subdomain, security.top_
level_domain)

Allows you to filter for specific types of domains without having to rely on
complex regular expressions.

Domain parts lengths (security.parent_domain_length, security.
subdomain_length)

Since DGA tend to be quite long, the length of parts of the domain can be
used to create alerts that will help in detection of such cases.

38Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix A - Coralogix Cloud
Security Installation

System and environment requirements:

A security group that will be used as the security group of the management
interface (eth2) of Coralogix. This security group should at least allow the
following communications:

Outbound: To Coralogix on port 443/tcp (to send the data)

Outbound: To anywhere on the Internet on port 43/tcp (whois)

Outbound: To s3.amazonaws.com on port 80/tcp

Outbound: To the relevant endpoints and protocols for your AWS region as
detailed in this document: https://docs.aws.amazon.com/general/latest/gr/
s3.html

Outbound: To download.docker.com on port 443/tcp

Outbound: To APT repositories on ports 80/tcp and 443/tcp

Inbound: At least from your computer on port 22/tcp

A private key that will be used to connect to Coralogix via SSH. Since
Coralogix is usually exposed to highly sensitive information, and SSH
access to it is almost never required, we strongly recommend that you’ll use
a dedicated key for Coralogix and store it only once on a safe place and that
you won’t make any additional copies of it.

39Coralogix Cloud Security Whitepaper © 2020 All rights reserved

At least one available Elastic IP in your AWS account

An S3 bucket for holding Coralogix configuration files (optional but highly
recommended)

An S3 bucket for keeping compressed pcap files (optional but recommended)

The name and ID of the VPC you would like Coralogix to be installed in

The name and ID of the subnet you would like Coralogix to be connected to

If you would like to run Coralogix as a spot fleet, the maximum hourly price
you or your organization is willing to pay AWS for the instance of Coralogix

The application and subsystem names you would like to assign the data
from this Coralogix instance

Included in the installation

During the installation, the following components will be installed in your
AWS account depending on the choices you make on the installation UI:

Spot fleet installation:

IAM role and an instance profile with the following permissions (these are
the default permissions and they should be limited manually to specific
objects after Coralogix is installed):

sts:AssumeRole for services ec2.amazonaws.com and spotfleet.
amazonaws.com – This allows the EC2 and SpotFleet services to use this
IAM role.

cloudformation:DescribeStackResource on * – This is required by code in
the instance to find out whether it was installed properly.

40Coralogix Cloud Security Whitepaper © 2020 All rights reserved

elasticloadbalancing:DescribeInstanceHealth on * – This is required by
code in the instance to find out whether it was installed properly.

elasticloadbalancing:RegisterTargets on * – This is required for attaching
two additional ENIs to Coralogix upon first boot of the spot.

ec2:* on * – Required by Coralogix fleet manager to launch new spots or
terminate spots. Also, this is required for attaching two additional ENIs to
Coralogix upon first boot of the spot.

s3:* on * – Required for S3 access to the config & packets buckets

VPC Traffic Mirror Filter – This object is being created as a stub to help
you set up a mirroring session later. Without a mirror session (which is NOT
created by the CloudFormation template) this object won’t do anything –
This mirror filter is built with an empty policy, meaning that by using it as-
is in a mirroring session you will essentially mirror every traffic from and
to the mirrored ENI.

VPC Traffic Mirror Target – This mirror target points at the sniffing NLB.
Without a mirror session (which is NOT created by the CloudFormation
template) this object won’t do anything and will simply facilitate the
creation of a VPC Traffic Mirroring Session.

A Security Group for the capturing interfaces (eth0 and eth1) – These
security groups allow the mirroring traffic to reach Coralogix for analysis
and is attached (on the first boot of the Coralogix instance) to the first two
network interfaces which are used by Coralogix for packet capturing (the
first one is for VXLAN encapsulated traffic from AWS VPC Mirroring and
the second one is for raw traffic). By default, this security group allows all
traffic to these network interfaces. Since there are no daemons listening on
these network interfaces this doesn’t affect the security of Coralogix.

41Coralogix Cloud Security Whitepaper © 2020 All rights reserved

An AWS ElasticIP which will be used as Coralogix’s public IP when sending
the logs to Coralogix as well as for other outbound connections. This IP
will be associated (on the first boot of Coralogix) with the third network
interface and will also be used for connecting to Coralogix via SSH.

An NLB, NLB Listener and an NLB target group which will be used for
sending the mirrored traffic to Coralogix. The Coralogix instance will
be automatically registered as a target in this NLB target group by the
CloudFormation process. Although the instance will appear as unhealthy in
this target group this is perfectly normal and expected.

If selected that Wazuh/AWS Inspector integration is needed the following
will be added:

An NLB, NLB Listener and an NLB target group and two NLB listeners
(one for Wazuh registrations and another for Wazuh traffic) will be created
during the CloudFormation process and will be attached upon first boot of
Coralogix.

A spot fleet – This is the spot fleet that will launch the Coralogix spot
instance.

The installation process will also set the SSH key pair for the Coralogix
instance to the key pair selected on the CloudFormation form.

Upon first boot Coralogix will associate the security group you’ve selected
on the CloudFormation form with the management network interface (eth2)

42Coralogix Cloud Security Whitepaper © 2020 All rights reserved

On-demand installation

IAM role and an instance profile with the following permissions (these are
the default permissions and they should be limited manually to specific
objects after Coralogix is installed):

sts:AssumeRole for services ec2.amazonaws.com – This allows the EC2
service to use this IAM role.

cloudformation:DescribeStackResource on * – This is required by code in
the instance to find out whether it was installed properly.

elasticloadbalancing:DescribeInstanceHealth on * – This is required by
code in the instance to find out whether it was installed properly.

elasticloadbalancing:RegisterTargets on * – This is required for attaching
two additional ENIs to Coralogix upon first boot of the spot.

ec2:* on * – Required for attaching two additional ENIs to Coralogix upon
first boot of the instance.

s3:* on * – Required for S3 access to the config & packets buckets

VPC Traffic Mirror Filter – This object is being created as a stub to help
you set up a mirroring session later. Without a mirror session (which is NOT
created by the CloudFormation template) this object won’t do anything –
This mirror filter is built with an empty policy, meaning that by using it as-
is in a mirroring session you will essentially mirror every traffic from and
to the mirrored ENI.

VPC Traffic Mirror Target – This mirror target points at the sniffing NLB.
Without a mirror session (which is NOT created by the CloudFormation
template) this object won’t do anything and will simply facilitate the

43Coralogix Cloud Security Whitepaper © 2020 All rights reserved

creation of a VPC Traffic Mirroring Session.

A Security Group for the capturing interfaces (eth0 and eth1) – These
security groups allow the mirroring traffic to reach Coralogix for analysis
and is attached (on the first boot of the Coralogix instance) to the first two
network interfaces which are used by Coralogix for packet capturing (the
first one is for VXLAN encapsulated traffic from AWS VPC Mirroring and
the second one is for raw traffic). By default, this security group allows all
traffic to these network interfaces. Since there are no daemons listening on
these network interfaces this doesn’t affect the security of Coralogix.

An AWS ElasticIP which will be used as Coralogix’s public IP when sending
the logs to Coralogix as well as for other outbound connections. This IP
will be associated (on the first boot of Coralogix) with the third network
interface and will also be used for connecting to Coralogix via SSH.

An NLB, NLB Listener and an NLB target group which will be used for
sending the mirrored traffic to Coralogix. The Coralogix instance will
be automatically registered as a target in this NLB target group by the
CloudFormation process. Although the instance will appear as unhealthy in
this target group this is perfectly normal and expected.

If selected that Wazuh/AWS Inspector integration is needed the following
will be added:

An NLB, NLB Listener and an NLB target group and two NLB listeners
(one for Wazuh registrations and another for Wazuh traffic) will be created
during the CloudFormation process and will be attached upon first boot of
Coralogix.

An EC2 instance – For hosting Coralogix.

44Coralogix Cloud Security Whitepaper © 2020 All rights reserved

The installation process of Coralogix Cloud Security:

Contact Coralogix customer support to enable the Cloud Security feature for
your account

Login to your Coralogix account and then navigate to Settings => Cloud
Security

Set the application and subsystem names you would like to assign the data
from this Coralogix instance

Select whether Wazuh/AWS Inspector is needed

Select the size of Coralogix you’ll need (small, medium or large)

Select whether the Coralogix instance should run as a spot fleet or as an on-
demand instance

Select the AWS region in which you would like Coralogix to be installed in
(normally, the best option is in the same region where the instances you’d
like to monitor are)

On another tab, make sure you are logged on with the correct AWS account

Click on the “LAUNCH AWS CLOUDFORMATION” button. You’ll be
redirected to an AWS CloudFormation form

In the AWS CloudFormation form, choose the instance type you would like
to use (applicable for on-demand installations only)

Set the name of the S3 bucket you would like Coralogix to use to update/pull
configuration to/from (optional but highly recommended)

Set the SSH key name you would like to use for Coralogix

45Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Set the security group that will be used for the management interface

Set the name of the S3 bucket you would like Coralogix to upload
compressed pcap files to. (optional but recommended. If you chose to use it
just remember to create a lifecycle cleanup hook on this bucket to prevent it
from growing too large.

Set the subnet and VPC IDs you would like Coralogix to be connected to

Tick the box below that says “I acknowledge that AWS CloudFormation
might create IAM resources.”

Click “Create stack”. While it is creating all the necessary resources in
your AWS account, you can go ahead and install the Automatic VPC Traffic
Mirroring handler as described here.

46Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix B - Automate VPC
Mirroring Configuration for
Coralogix

After installing Coralogix Cloud Security and choosing a mirroring strategy
suitable for your organization needs the next step would be to set the
mirroring configuration in AWS. However, the configuration of VPC Traffic
Mirroring in AWS is tedious and cumbersome – it requires you to create a
mirror session per network interface of every mirrored instance.

If you, like many others, use auto-scaling groups to automatically scale
your services up and down based on the actual need or spot fleets to
minimize costs, the situation quickly becomes completely unmanageable.

Luckily for you, we at Coralogix have already prepared a solution for that
problem. The tool we’ve developed can run as a pod in Kubernetes or inside
a Docker container. It is written in Go to be as efficient as possible and will
require only a minimal set of resources to run properly.

While it is running it will read its configuration from a simple JSON file
and will select AWS EC2 instances by tags and then will select network
interfaces on those instances and will create VPC Traffic Mirroring sessions
for each network interface selected to the configured VPC Mirroring Target
using the configured VPC Mirroring Filter.

The configuration used in this document will instruct sta-vpc-mirroring-
manager to look for AWS instances that have the tags “sta.coralogix.com/
mirror-filter-id” and “sta.coralogix.com/mirror-target-id” (regardless of

47Coralogix Cloud Security Whitepaper © 2020 All rights reserved

the value of those tags), collect the IDs of their first network interfaces
(that are connected as eth0) and attempt to create a mirror session for each
network interface collected to the mirror target specified by the tag “sta.
coralogix.com/mirror-target-id” using the filter ID specified by the tag “sta.
coralogix.com/mirror-filter-id” on the instance that network interface is
connected to.

To function properly, the instance hosting this pod should have an IAM role
attached to it (or the AWS credentials provided to this pod/container should
contain a default profile) with the following permissions:

ec2:Describe* on *

elasticloadbalancing:Describe* on *

autoscaling:Describe* on *

ec2:ModifyTrafficMirrorSession on *

ec2:DeleteTrafficMirrorSession on *

ec2:CreateTrafficMirrorSession on *

48Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Installation

This tool can be installed either as a Kubernetes pod or a Docker container.
Here are the detailed instructions for installing it:

Installation as a docker container:

To download the docker image use the following command:

docker pull coralogixrepo/sta-vpc-mirroring-config-manager:latest

On the docker host, create a config file for the tool with the following
content (if you would like the tool to report to the log what is about to be
done without actually modifying anything set “dry_run” to true)

49Coralogix Cloud Security Whitepaper © 2020 All rights reserved

{
 “service_config”: {
 “rules_evaluation_interval”: 10000,
 “metrics_exporter_port”: “:8080”,
 “dry_run”: false
 },
 “rules”: [
 {
 “conditions”: [
 {
 “type”: “tag-exists”,
 “tag_name”: “sta.coralogix.com/mirror-target-id”
 },
 {
 “type”: “tag-exists”,
 “tag_name”: “sta.coralogix.com/mirror-filter-id”
 }
],
 “source_nics_matching”: [
 {
 “type”: “by-nic-index”,
 “nic_index”: 0
 }
],
 “traffic_filters”: [
 {
 “type”: “by-instance-tag-value”,
 “tag_name”: “sta.coralogix.com/mirror-filter-id”
 }
],
 “mirror_target”: {
 “type”: “by-instance-tag-value”,
 “tag_name”: “sta.coralogix.com/mirror-target-id”
 }
 }
]
}

Use the following command to start the container:

docker run -d \
 -p <prometheus_exporter_port>:8080 \
 -v <local_path_to_config_file>:/etc/sta-pmm/Coralogix-pmm.conf \
 -v <local_path_to_aws_profile>/.aws:/root/.aws \
 -e “STA_PM_CONFIG_FILE=/etc/sta-pmm/Coralogix-pmm.conf” \ coralogixrepo/sta-vpc-mirroring-config-
manager:latest

50Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Installation as a Kubernetes deployment

Use the following config map and deployment configurations:

apiVersion: v1
kind: ConfigMap
data:
 sta-pmm.conf: |
 {
 “service_config”: {
 “rules_evaluation_interval”: 10000,
 “metrics_exporter_port”: 8080,
 “dry_run”: true
 },
 “rules”: [
 {
 “conditions”: [
 {
 “type”: “tag-exists”,
 “tag_name”: “sta.coralogix.com/mirror-target-id”
 },
 {
 “type”: “tag-exists”,
 “tag_name”: “sta.coralogix.com/mirror-filter-id”
 }
],
 “source_nics_matching”: [
 {
 “type”: “by-nic-index”,
 “nic_index”: 0
 }
],
 “traffic_filters”: [
 {
 “type”: “by-instance-tag-value”,
 “tag_name”: “sta.coralogix.com/mirror-filter-id”
 }
],
 “mirror_target”: {
 “type”: “by-instance-tag-value”,
 “tag_name”: “sta.coralogix.com/mirror-target-id”
 }
 }
]
 }
metadata:
 labels:
 app.kubernetes.io/component: sta-pmm
 app.kubernetes.io/name: sta-pmm
 app.kubernetes.io/part-of: coralogix
 app.kubernetes.io/version: ‘1.0.0-2’
 name: sta-pmm
 namespace: coralogix

51Coralogix Cloud Security Whitepaper © 2020 All rights reserved

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app.kubernetes.io/component: sta-pmm
 app.kubernetes.io/name: sta-pmm
 app.kubernetes.io/part-of: sta
 app.kubernetes.io/version: ‘1.0.0-2’
 name: sta-pmm
 namespace: sta
spec:
 selector:
 matchLabels:
 app.kubernetes.io/component: sta-pmm
 app.kubernetes.io/name: sta-pmm
 app.kubernetes.io/part-of: sta
 template:
 metadata:
 labels:
 app.kubernetes.io/component: sta-pmm
 app.kubernetes.io/name: sta-pmm
 app.kubernetes.io/part-of: sta
 app.kubernetes.io/version: ‘1.0.0-2’
 name: sta-pmm
 spec:
 containers:
 - env:
 - name: STA_PM_CONFIG_FILE
 value: /etc/Coralogix-pmm/Coralogix-pmm.conf
 - name: AWS_ACCESS_KEY_ID
 value: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 - name: AWS_SECRET_ACCESS_KEY
 value: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 image: coralogixrepo/sta-vpc-mirroring-config-manager:latest
 imagePullPolicy: IfNotPresent
 livenessProbe:
 httpGet:
 path: “/”
 port: 8080
 initialDelaySeconds: 5
 timeoutSeconds: 1
 name: sta-pmm
 ports:
 - containerPort: 8080
 name: sta-pmm-prometheus-exporter
 protocol: TCP
 volumeMounts:
 - mountPath: /etc/sta-pmm/Coralogix-pmm.conf
 name: sta-pmm-config
 subPath: sta-pmm.conf
 volumes:
 - configMap:
 name: sta-pmm-config
 name: sta-pmm-config

52Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Traffic Mirroring Configuration

To configure instances for mirroring, all you have to do is to make sure that
the instances you would like their traffic to be mirrored to your Coralogix
Cloud Security, will have the tags “sta.coralogix.com/mirror-filter-id” and
“sta.coralogix.com/mirror-target-id” pointing at the correct IDs of the
mirror filter and target respectively. To find out the IDs of the mirror target
and mirror filter that were created as part of the installation of Coralogix,
enter the CloudFormation Stacks page in AWS Console and search for
“TrafficMirrorTarget” and for “TrafficMirrorFilter” in the Resources tab:

To assign different mirroring policy to different instances, for example to
mirror traffic on port 80 from some instances and mirror traffic on port 53
from other instances, simply create a VPC Traffic Mirror Filter manually
with the correct filtering rules (just like in a firewall) and assign its ID to
the “sta.coralogix.com/mirror-filter-id” tag of the relevant instances.

Pro Tip: You can use AWS “Resource Groups & Tag Editor” to quickly assign
tags to multiple instances based on an arbitrary criteria.

53Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix C - Modify Snort Rules

Once you install our Coralogix Cloud Security it will automatically pull a set
of snort rules from the Internet and will continue to update them on a daily
basis.

However, in the security business, there’s no “one size fits all” solutions.
Some of these rules might suit your organization while others might need
a few tweaks to get them to work correctly in your environment. In the new
version of Coralogix Cloud Security, we added the support for synchronizing
its configuration against an S3 bucket. By using this feature, you can easily
fine-tune your snort alerts as explained here:

Detect the problematic alert’s SID: By navigating to the NIDS dashboard in
Kibana you should see a dashboard similar to this one:

If you scroll down a bit, you should be able to see the list of alerts by IP
addresses, like the example below. The two columns marked on this

54Coralogix Cloud Security Whitepaper © 2020 All rights reserved

screenshot are the group id (GID) and the snort id (SID) of the alert. We’ll
need them in the next step to disable the relevant alert and create a new
one.

Get the original snort rule: Connect to your Coralogix instance via SSH by
using the SSH key you provided during the installation of Coralogix and run
the following command (no sudo permissions required):

grep ‘<the snort sid of the alert>’ /etc/nsm/rules/downloaded.rules

55Coralogix Cloud Security Whitepaper © 2020 All rights reserved

You should get an output similar to this:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”ET POLICY curl

User-Agent Outbound”; flow:established,to_server; content:”User-Agent|3a|

curl/”; nocase; http_header; reference:url,www.useragentstring.com/

pages/useragentstring.php; classtype:attempted-recon; sid:2013028; rev:2;

metadata:created_at 2011_06_14, updated_at 2011_06_14;)

Disable the original snort rule: Copy the relevant config files from the S3
bucket you configured for Coralogix to use as its configuration bucket by
using the following command:

aws --region <your aws region> s3 cp s3://<s3 bucket used for Coralogix

configuration>/local.rules /tmp/

aws --region <your aws region> s3 cp s3://<s3 bucket used for Coralogix

configuration>/disablesid.conf /tmp/

Open the file /tmp/disablesid.conf with your favorite text editor (we highly
recommend using either nano or vi/vim) and add lines similar to these at
the bottom of the file:

Not relevant for my organization

<alert group id>:<alert snort id>

56Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Create a modified version of the original rule (optional): If you only intend
to modify an existing rule, copy the rule you found in step 2 above and
paste it at the bottom of the local.rules file.

Upload the files back to the S3 bucket: Use the following commands to
upload the files to the config S3 bucket (if you only disabled a rule then the
second command is not required)

aws --region <your aws region> s3 cp /tmp/disablesid.conf s3://<s3 bucket

used for Coralogix configuration>/

aws --region <your aws region> s3 cp /tmp/local.rules s3://<s3 bucket used

for Coralogix configuration>/

After you’ve completed the steps above, your Coralogix Cloud Security will
automatically detect the changes and apply them.

57Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix D - Best Practices to
Writing Effective Snort Rules

Target the vulnerability, not the exploit - Avoid writing rules for detecting
a specific exploit kit because there are countless exploits for the same
vulnerability and we can be sure that new ones are being written as you’re
reading this. For example, many of the early signatures for detecting buffer

 overrun attacks looked like this:alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (content:”AAAAAAAAAAAAAA”,

msg:”Buffer overrun detected.”)

The reason for that is of course that to launch a successful buffer overrun
attack, the attacker needs to fill the buffer of a certain variable and add
his malicious payload at the end so that it would become executable. The
characters he chooses to use to fill the buffer are completely insignificant
and indeed, after such signatures appeared, many attack toolkits simply
used a different letter or letters to fill the buffer and completely evaded
this type of signature detection. A much better way would be to attempt to
detect these kinds of attacks by detecting incorrect input to fields based on
their type and length.

Your peculiarity is your best asset, so use it - Every organization has things
that make it unique. Many of these can be quite useful when you try to
catch malicious activity in your organization – both external and internal.
By using this deep internal knowledge to your advantage, you’ll essentially
convert the problem from a technological one to a pure old-school
intelligence problem, forcing attackers to have a much more intimate
understanding of your organization in order to be able to hide their tracks

58Coralogix Cloud Security Whitepaper © 2020 All rights reserved

effectively. These things can be technological in nature or based on your
organization’s particular working habits and internal guidelines. Here are
some examples:

Typical Working Hours: Some organizations I worked at did not allow
employees to work from home at all and the majority of employees would
have already left the office by 19:00. For similar organizations, it would
make sense to set an alert to notify you of connections from the office after
a certain hour. An attacker that would install malicious software in your
organization would have to know that behavior and tune his malware to
communicate with its Command & Control servers at precisely the same
time such communications would go unnoticed.

Typical Browser: Suppose your organization has decided to use the Brave
browser as its main browser and it gets installed on every new corporate
laptop automatically and you have removed the desktop shortcuts to IE/
Edge browser from all of your corporate laptops. If this is the case, a
connection from the organization, both to an internal as well as external
addresses that use a different browser such as IE/Edge should be configured
to raise an alert.

IP Ranges based on Roles: If it’s possible for you to assign different IP
ranges for different servers based on their role, for example, to have all
DB servers on 192.168.0.0/24, the web servers on 192.168.1.0/24, etc then it
would be possible and even easy to set up clever rules based on the expected
behavior of your servers based on their role. For example, database servers
usually don’t connect to other servers on their own, printers don’t try to
connect to your domain controllers, etc.

59Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Unusual Connection Attempts: Many organizations use a public share on
a file server to help their users share files between them and use network
enabled printers to allow their users to print directly from their computers.
That means that client computers should not connect to each other, even if
you have (wisely) chosen to block such access in a firewall or at the switch,
the very attempt to connect from one client to another client computer
should raise an alert and be thoroughly investigated.

Uncommon Ports: Some organizations use a special library for
communication optimizations between services so that all HTTP
communication between servers uses a different port than the common
ones (such as 80, 443, 8080, etc). In this case, it’s a good idea to create a rule
that would be triggered by any communication on these normally common
ports.

Honeytokens - In a battlefield like the Internet where everyone can be just
about anyone, deception, works well for defenders just as well as it does for
the attackers, if not better. Tricks like renaming the built in administrator
account to a different, less attractive name and creating a new account
named Administrator which you’ll never use and create a Snort rule
for detecting if this user name, email or password are ever used on the
network. It would be next to impossible for attackers to notice that Snort
has detected their attempts to use the fake administrator user. Another
example is to create fake products, customers, users, and credit card
records in the database and then matching Snort rules for detecting them
in the network traffic.

60Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix E - Installing and
Configuring a Wazuh Agent

If you have installed Coralogix Cloud Security with support for Wazuh, you
can improve your security posture and visibility by installing the Wazuh
agent on your instances.

Wazuh is a fork of OSSEC, the famous vulnerability assessment tool. It
has an agent version for almost every type of operating system (Linux,
Windows, macOS, Solaris, AIX, HP-UX). Coralogix Cloud Security includes
a Wazuh Manager installation out of the box so you can simply install the
agent and configure it to use Coralogix as its manager.

To avoid having to reinstall or reconfigure the Wazuh agent on your
instances each time Coralogix is restarted (especially if it is installed as a
spot fleet) we configured the installation to create a network load balancer
that redirects the traffic to Coralogix’s Wazuh server. So the first step of the
installation would be to find out the DNS name of your Wazuh network load
balancer. To do that follow these steps:

Login to your AWS console and switch to the CloudFormation console

Select the Coralogix Cloud Security stack you created and switch to the
Resources tab

Find the “WazuhNLB” on the resources list and copy its ARN string

Switch to the EC2 management console and navigate to the load balancer
section

61Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Paste the ARN string you copied into the search box and hit Enter

The DNS name of your Wazuh manager appears in the “DNS name” field of
the single object that is now shown.

Now that you have the DNS name of the Wazuh manager, all you have to do
is to install the agent on your instances and configure them to connect to
the Wazuh manager on Coralogix. We recommend that you would simply
paste the installation code into the user data of the instances you would
like to connect to Coralogix’s Wazhu manager. This way, if the instance is
rebooted and gets a new IP address the connection between Coralogix agent
and Coralogix manager will remain intact. This is the installation code for
debian based Linux operating systems:

#!/bin/bash
logger -s “+Installing WAZUH agent...”
sudo apt-get update
sudo apt-get install curl apt-transport-https lsb-release gnupg2
curl -s https://packages.wazuh.com/key/GPG-KEY-WAZUH | sudo apt-key add -
echo “deb https://packages.wazuh.com/3.x/apt/ stable main” | sudo tee /etc/
apt/sources.list.d/wazuh.list
sudo apt-get update
export WAZUH_MANAGER_IP=”<<<<PUT_WAZUH_MANAGER_DNS_NAME_HERE_>>>>”
sudo -E apt-get install wazuh-agent=3.9.5-1
sudo cat /var/ossec/etc/ossec.conf

You can find instructions for installing the Wazuh agent for other types of
Linux as well as for other operating systems here. Just remember to set the
WAZUH_MANAGER_IP environment variable to your Coralogix’s Wazuh
NLB.

62Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Appendix F - Mirroring Strategies
- Real Life Examples

Example 1: MyBookStore company:

This example represents a simple books store. The frontend servers hold
the code for handling customers requests for searching and purchasing
books, all the system’s data is stored in the database servers. Currently, the
throughput to the website is not extremely high but is expected to grow
significantly in the upcoming months due to the new year’s sales.

63Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Server type Public IP From To Service Status

Rev. Proxy EIP any any HTTP/tcp Allow

any any HTTPS/tcp Allow

192.168.1.0/24 Frontend HTTP/tcp Allow

192.168.1.0/24 any NTP/udp Allow

Bastion any SSH/tcp Allow

192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

Frontend None Rev. Proxy 192.168.1.0/24 HTTP/tcp Allow

192.168.1.0/24 Backend Set of custom ports Allow

192.168.1.0/24 any NTP/udp Allow

Bastion 192.168.1.0/24 SSH/tcp Allow

192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

Backend None Frontend 192.168.1.0/24 Set of custom ports Allow

192.168.1.0/24 DB DB Ports Allow

192.168.1.0/24 any NTP/udp Allow

Bastion 192.168.1.0/24 SSH/tcp Allow

192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

DB None Backend 192.168.1.0/24 DB ports/tcp Allow

192.168.1.0/24 any NTP/udp Allow

Bastion 192.168.1.0/24 SSH/tcp Allow

192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

Security groups and public IP configuration:

64Coralogix Cloud Security Whitepaper © 2020 All rights reserved

DNS None 192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 any NTP/udp Allow

192.168.1.0/24 any DNS/udp Allow

Bastion 192.168.1.0/24 SSH/tcp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

Packages Cache None 192.168.1.0/24 any HTTP/tcp, HTTPS/tcp Allow

192.168.1.0/24 any NTP/udp Allow

192.168.1.0/24 any DNS/udp Allow

Bastion 192.168.1.0/24 SSH/tcp Allow

Bastion EIP Well defined set of
IP addresses

192.168.1.0/24 SSH/tcp Allow

192.168.1.0/24 any NTP/udp Allow

192.168.1.0/24 DNS DNS/udp Allow

192.168.1.0/24 Packages Cache HTTP/tcp, HTTPS/tcp Allow

The network diagram above describes a typical network of a SAAS service,
a collection of reverse proxies that handle HTTPS encryption and clients
connections that after basic validation such as URIs paths, and sometimes
even parameters and HTTP methods and then send the HTTP requests as
HTTP to the frontend servers which in turn make requests to their backend
servers which process the data and update or query the DB servers and re-
turn the requested result.

In this setup the only servers that are exposed to the Internet and are ex-
pected to be reachable by other servers on the Internet are the proxy serv-
ers and the bastion server. All other servers do not have a public IP address
assigned to them.

65Coralogix Cloud Security Whitepaper © 2020 All rights reserved

All DNS queries are expected to be sent to the local DNS server which will
resolve them against other DNS servers on the Internet.

Package installations and updates for all the servers on this network is ex-
pected to be handled against the local packages caching server. So that all
other servers will not need to access the Internet at all except for time syn-
chronization against public NTP servers.

SSH connections to the servers are expected to happen only via the bastion
server and not directly from the Internet.

In this scenario, we would recommend using the following mirroring con-
figuration by server type:
Reverse Proxies:
Since these servers are contacted by users from the Internet over a TLS en-
crypted connection, most of the traffic to it should be on port 443 (HTTPS)
and its value to traffic rate ratio is expected to be quite low, we would rec-
ommend the following mirror filter configuration:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Outbound:

* - Although this rule will also mirror the server’s encrypted responses to
the HTTPS requests we do recommend that you mirror it since it might also
contain HTTPS connections initiated by malwares running on the proxy
servers to command and control servers and especially since the traffic vol-
ume of the server’s responses is not expected to be extremely high.

66Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Exclude incoming
HTTPS

reject TCP - 443 0.0.0.0 <your servers
subnet>

200 Monitor everything else accept All protocols - - 0.0.0.0 0.0.0.0/0

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

200 Monitor everything else accept All protocols - - 0.0.0.0 0.0.0.0/0

Inbound:

Outbound:

Frontend servers:
Since the frontend servers receive the unencrypted traffic they are es-
sentially the the first place on the network in which we can detect attacks
against the system and therefore their traffic data is very valuable from an
information security perspective. This is why we believe that you would
mirror any traffic from and to these servers. However, since this will of
course include the valid traffic by the customers, albeit extremely valu-
able for creating a good baseline which can later be used to detect anoma-
lies, this can also be rather expensive for the organization. For such cases
we would recommend the following mirroring configuration for detecting
abnormal behavior of the frontend servers that can indicate a Cyber attack
that is currently in progress:

* - Although this rule will also mirror the server’s responses to the HTTPS
requests we do recommend that you mirror it since it might also contain
HTTPS connections initiated by malwares running on the proxy servers to
command and control servers. Also, this might include unintended respons-
es that will indicate that an attack (such as XSS or SQL Injection) took place.

67Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Exclude incoming
HTTPS

reject TCP - 80 0.0.0.0 <your servers
subnet>

200 Monitor everything else accept All protocols - - 0.0.0.0 0.0.0.0/0

Inbound:

Backend servers:
Since the frontend servers are contacting these servers with requests that
are supposed to be valid after the checks done by the proxy and frontend
servers, the traffic volume is expected to be significantly lower than traffic
volume to the proxy and frontend servers. Also, since this is the last chance
to detect malicious traffic before it reaches the database, we believe that
all traffic from these servers should be mirrored. However, if this is still
too expensive for your organization, we would recommend that you use
the following mirroring configuration to at least be able to tell if a backend
server is behaving abnormally which may indicate that it has already been
breached:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0 0.0.0.0/0

Outbound:

* - Although this rule will also mirror the server’s responses to frontend
requests we do recommend that you mirror it since it might also contain
HTTPS connections initiated by malwares running on the proxy servers to
command and control servers. Also, this might include unintended respons-
es that will indicate that an attack (such as XSS or SQL Injection) took place.

68Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Exclude incoming
HTTPS

reject TCP - 80 0.0.0.0 <your servers
subnet>

200 Monitor everything else accept All protocols - - 0.0.0.0 0.0.0.0/0

Inbound:

Databases:
Since this server is at the heart of the customer’s system, we recommend
that you would mirror all traffic in and out of this server.

DNS server:
Since this server generates a very minimal amount of traffic that is so ex-
tremely valuable for detecting so many types of attacks we recommend that
you would mirror all traffic in and out of this server.

Package cache server:
Since this server is responsible for packages installations on all other serv-
ers, the data from and to this server can answer questions like who in-
stalled what when, which can be crucial in a forensic investigation and for
detecting installation of malicious tools on the server. Also, the traffic vol-
ume from and to this server is expected to be quite low. Therefore, we rec-
ommend that you would mirror all traffic in and out of this server.

Bastion server:
Since this server is serving as the only way to manage all other servers,
provided that it is being used to update the code on the various servers, in-
stall required packages, etc., the traffic volume should be relatively low and
the value of the data it can provide is extremely high and therefore we rec-
ommend that you would mirror all traffic in and out of this server.

69Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Example 2 - GoldenBank:

70Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Zoom-in app 1

Zoom-in app 2

71Coralogix Cloud Security Whitepaper © 2020 All rights reserved

In this scenario, the client is running two different services, in two differ-
ent private VPCs. The two VPCs cannot communicate with each other. The
reverse proxies handle the majority of the traffic and perform basic request
validations such as URIs and web methods and possibly also parameters
type validation and then forward the request to the frontend servers. Unlike
the previous scenario, the connection between the reverse proxy and the
frontend servers is also encrypted in TLS.

The frontend servers perform business context validation of the requests
and then process them by sending requests to the backend servers.

The backend servers in app1 rely on a storage server, while the backend
servers of app2 rely on an AWS RDS service.
Here is the details of the security groups of all instances in both applica-
tions’ VPCs:

Server Type Public IP From To Service Status

Rev. Proxy None any any HTTP/tcp Allow

any any HTTPS/tcp Allow

10.0.0.0/16 Frontend HTTPS/tcp Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 DNS DNS/udp Allow

10.0.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

Frontend None Rev. Proxy 10.0.0.0/16 HTTPS/tcp Allow

10.0.0.0/16 Backend Custom ports set Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 DNS DNS/udp Allow

10.0.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

VPC - App1

72Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Backend None Frontend 10.0.0.0/16 Custom ports set Allow

10.0.0.0/16 Storage NFS/udp Allow

10.0.0.0/16 Storage NFS/tcp Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 DNS DNS/udp Allow

10.0.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

Storage None Backend 10.0.0.0/16 NFS/udp Allow

Backend 10.0.0.0/16 NFS/tcp Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 DNS DNS/udp Allow

10.0.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

DNS None 10.0.0.0/16 any DNS/udp Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

Package Cache None 10.0.0.0/16 any HTTP/tcp, HTTPS/
tcp

Allow

10.0.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.0.0.0/16 DNS DNS/udp Allow

VPC - App2

Server Type Public IP From To Service Status

Rev. Proxy None any any HTTP/tcp Allow

any any HTTPS/tcp Allow

10.1.0.0/16 Frontend HTTPS/tcp Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 DNS DNS/udp Allow

10.1.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

73Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Frontend None Rev. Proxy 10.1.0.0/16 HTTPS/tcp Allow

10.1.0.0/16 Backend Custom ports set Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 DNS DNS/udp Allow

10.1.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

Backend None Frontend 10.0.0.0/16 Custom ports set Allow

10.1.0.0/16 RDS DB ports Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 DNS DNS/udp Allow

10.1.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

RDS None Backend 10.1.0.0/16 DB ports Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 DNS DNS/udp Allow

10.1.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

DNS None 10.1.0.0/16 any DNS/udp Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 Packages Cache HTTP/tcp, HTTPS/
tcp

Allow

Package Cache None 10.1.0.0/16 any HTTP/tcp, HTTPS/
tcp

Allow

10.1.0.0/16 any NTP/udp Allow

Bastion any SSH/tcp Allow

10.1.0.0/16 DNS DNS/udp Allow

74Coralogix Cloud Security Whitepaper © 2020 All rights reserved

This network architecture is quite complex and would require an approach
that would combine multiple data sources to provide proper security for it.
In addition, it involves traffic that is completely encrypted, storage serv-
ers that are contacted via encrypted connections and also AWS services that
cannot be mirrored to the STA.

Here are our visibility recommendations for similar networks:

App1

Reverse Proxies and Front-end servers:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Drop HTTPS* reject TCP - 443 0.0.0.0 10.0.0.0/16

200 Monitor everything else accept All protocols - - 0.0.0.0 0.0.0.0/0

Inbound:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0 0.0.0.0/0

Outbound:

* - Although this rule will also mirror the server’s responses to the HTTPS
requests we do recommend that you mirror it since it might also contain
HTTPS connections initiated by malwares running on the proxy servers to
command and control servers. Also, this might include unintended respons-
es that will indicate that an attack (such as XSS or SQL Injection) took place.

* Since the incoming traffic on HTTPS is encrypted, the only thing it can
indicate is its volume over time which can indicate certain types of DoS or
DDoS and also the validity of the certificates used. So if the traffic volume is
expected to be high, we would recommend excluding this traffic.

75Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Backend servers:
Since the frontend servers are contacting these servers with requests that
are supposed to be valid after the checks done by the proxy and frontend
servers, the traffic volume is expected to be significantly lower than traffic
volume to the proxy and frontend servers. Also, since this is the last chance
to detect malicious traffic before it reaches the database, we believe that
all traffic from these servers should be mirrored. However, if this is still
too expensive for your organization, we would recommend that you use
the following mirroring configuration to at least be able to tell if a backend
server is behaving abnormally which may indicate that it has already been
breached:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything else accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Inbound:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Exclude file service activity ** reject TCP - NFS 10.0.0.0/16 10.0.0.0/16

200 Exclude file service activity ** reject UDP - NFS 10.0.0.0/16 10.0.0.0/16

300 Monitor everything * accept All protocols - - 0.0.0.0 0.0.0.0/0

Outbound:

* - Although this rule will also mirror the server’s responses to frontend
requests we do recommend that you mirror it since it might also contain
HTTPS connections initiated by malwares running on the proxy servers to
command and control servers. Also, this might include unintended respons-
es that will indicate that an attack (such as XSS or SQL Injection) took place.

** - Since the filesystem activity is usually heavy, we would recommend to
avoid mirroring this type of traffic unless it is highly valuable in your appli-
cation or network architecture.

76Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Storage Servers::

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Exclude file service activity * reject TCP - NFS 10.0.0.0/16 10.0.0.0/16

200 Exclude file service activity * reject UDP - NFS 10.0.0.0/16 10.0.0.0/16

300 Monitor everything accept All protocols - - 0.0.0.0 0.0.0.0/0

Outbound:

DNS server:
Since this server generates a very minimal amount of traffic that is so ex-
tremely valuable for detecting so many types of attacks we recommend that
you would mirror all traffic in and out of this server.

Package cache server:
Since this server is responsible for packages installations on all other serv-
ers, the data from and to this server can answer questions like who in-
stalled what when, which can be crucial in a forensic investigation and for
detecting installation of malicious tools on the server. Also, the traffic vol-
ume from and to this server is expected to be quite low. Therefore, we rec-
ommend that you would mirror all traffic in and out of this server.

Bastion server:
Since this server is serving as the only way to manage all other servers,
provided that it is being used to update the code on the various servers, in-
stall required packages, etc., the traffic volume should be relatively low and
the value of the data it can provide is extremely high and therefore we rec-
ommend that you would mirror all traffic in and out of this server.

77Coralogix Cloud Security Whitepaper © 2020 All rights reserved

App2

Reverse Proxies and Front-end servers:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Outbound:

* Even though most of the traffic is encrypted since it would include re-
sponses to clients requests, the outbound traffic is still extremely valuable. It
can indicate the size of the data being sent to the client and assist in detect-
ing large data leaks, it can detect connections originating from the reverse
proxy itself and help detect command and control connections, it can also
detect connections or connection attempts to other servers other than the
frontend servers which can detect lateral movement.

* Since the incoming traffic on HTTPS is encrypted, the only thing it can
indicate is its volume over time which can indicate certain types of DoS or
DDoS and also the validity of the certificates used. So if the traffic volume is
expected to be high, we would recommend excluding this traffic.

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Drop HTTPS* reject TCP - 443 0.0.0.0/0 10.1.0.0/16

200 Monitor everything else accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Inbound:

78Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Backend servers:

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Outbound:

* - Since this server is expected to communicate with the RDS service, we
would recommend mirroring all the traffic from this instance as this will
allow the detection of database related attacks. In addition, the RDS secu-
rity group should be configured to allow connections only from the back-
end server (this can be more strict by configuring the RDS itself to allow
connections only if they were identified by a certificate that exists only on
the backend server) and an alert should be defined in Coralogix based on
CloudTrail logs that would fire if the security group is modified. Also, by for-
warding the database logs from the RDS instance, an alert should be defined
in Coralogix so it would be triggered if the database detects connections
from other IP.

* Since the incoming traffic on HTTPS is encrypted, the only thing it can
indicate is its volume over time which can indicate certain types of DoS or
DDoS and also the validity of the certificates used. So if the traffic volume is
expected to be high, we would recommend excluding this traffic.

Rule number Description Rule action Protocol Source port
range

Destination
port range

Source
CIDR block

Destination
CIDR block

100 Monitor everything * accept All protocols - - 0.0.0.0/0 0.0.0.0/0

Inbound:
Since the traffic volume here should be quite low due to the validations
done by the proxies and front-end servers, and due to the fact that this is
the last point we can tap into the data before it is saved into the DB we rec-
ommend that you would mirror all incoming traffic from this server

79Coralogix Cloud Security Whitepaper © 2020 All rights reserved

DNS server:
Since this server generates a very minimal amount of traffic that is so ex-
tremely valuable for detecting so many types of attacks we recommend that
you would mirror all traffic in and out of this server.

Package cache server:
Since this server is responsible for packages installations on all other serv-
ers, the data from and to this server can answer questions like who in-
stalled what when, which can be crucial in a forensic investigation and for
detecting installation of malicious tools on the server. Also, the traffic vol-
ume from and to this server is expected to be quite low. Therefore, we rec-
ommend that you would mirror all traffic in and out of this server.

Bastion server:
Since this server is serving as the only way to manage all other servers,
provided that it is being used to update the code on the various servers, in-
stall required packages, etc., the traffic volume should be relatively low and
the value of the data it can provide is extremely high and therefore we rec-
ommend that you would mirror all traffic in and out of this server.

80Coralogix Cloud Security Whitepaper © 2020 All rights reserved

Improve your cloud security
posture today
Have questions? Contact support sales@coralogix.com

SCHEDULE A DEMO

mailto:sales%40coralogix.com?subject=Coralogix%20Cloud%20Security
https://bit.ly/3lasRPQ

